Изв. Крымской Астрофиз. Обс. 103, № 3, 48 – 57 (2007)

удк 524.7 Космические гамма-всплески: от наблюдений к физике

А. Позаненко¹, В. Румянцев², М. Ибрагимов³, Е. Павленко², Ю. Ефимов², Д. Шарапов³, В. Горанский⁴, Е.Барсукова⁶, М. Андреев⁸, К. Антонюк², О. Антонюк², И. Асфандияров³, <u>Г. Бескин⁴, В.</u> Бирюков^{2,5}, С. Бондарь⁷, В. Дорошенко^{2,5}, Г. Корниенко⁹, В. Лозников¹, [H. Меркулова², Е. Сергеева², С. Сергеев²

- $^2\,$ НИИ "Крымская астрофизическая обсерватория",
98409, Украина, Крым, Научный
- ³ Астрономический институт им.Улугбека АН РУз, Ташкент
- ⁴ Специальная астрофоизическая обсерватория РАН, Нижний Архыз
- ⁵ Крымская станция ГАИШ МГУ, Научный
- ⁶ ГАИШ МГУ, Москва
- ⁷ Станция наблюдения Нижний Архыз (НИИ ПП)
- ⁸ Институт астрономии РАН, Москва
- ⁹ Уссурийская астрофизическая обсерватория РАН, Горнотаежный

Поступила в редакцию 14 марта 2006 г.

[•] Аннотация. Представлены наблюдения проведенные в 2002-2005 гг. обсерваториями стран СНГ по программе поиска послесвечения космических гамма-всплесков. Приведены основные параметры регистрации событий и их статистика. Для всплесков GRB021004, GRB030329 и GRB041006 оценены пределы возможных спектральных вариаций начального периода послесвечения; рассмотрен GRB051008 с аномально малым отношением потоков в оптическом и рентгеновском диапазоне.

Ключевые слова: космические гамма-всплески, послесвечение

1 Наблюдения

Космические гамма-всплески (ГВ) – одна из нерешенных загадок современной астрофизики. Благодаря открытию оптической компоненты гамма-всплесков ученые приблизились к пониманию физики явления, определив, что расстояние до источников всплесков является космологическим – для самого далекого источника ГВ красное смещение z = 6.29. Однако детальной модели до сих пор не построено. Оптические наблюдения в настоящее время являются приоритетными в исследовании явления ГВ. Ученые СНГ активно участвуют в исследовании оптического компонента практически с момента открытия оптического послесвечения GRB970228 в 1997 г. (Коста и др., 1997; ван Парадайс и др., 1997). В работе Соколова и др. (1998) впервые была проведена многоцветная фотометрия ОТ этого всплеска. Наблюдения оптических транзиентов ведутся в КрАО с июня 2002 г. В феврале 2002 г. в САО были получены трехцветные наблюдения ОТ от GRB021004 (Barsukova et al., 2002). В марте 2003 г. в КрАО и на высокогорной обсерватории Майданак были проведены многоцветные наблюдения ОТ от GRB030329 (Ибрагимов и др., 2003), проведена пятицветная поляриметрия

 $^{^{1}\,}$ Институт космических исследований РАН, Москва

Рис. 1. Наблюдения сети обсерваторий послесвечения космических гамма-всплесков в 2002-2005 гг. По горизонтальной оси отложено запаздывание от начала всплеска до начала наблюдений в часах, по вертикальной оси – блеск оптического транзиента (ОТ) при его первоначальной регистрации (закрашенные символы) или верхний предел; большинство значений приведены в полосе R (см. табл.2). Представлены наблюдения *только* для ГВ: часть первоначальных сообщений о регистрации события впоследствии не были подтверждены. Из 56 наблюдавшихся ГВ в ~ 40% случаев был зарегистрирован ОТ. Для каждого всплеска показаны только первоначальные наблюдения: мониториг ярких событий или повторные наблюдения для подтверждения ОТ могли состоять из серии наблюдений. В случае наблюдения одного и того же всплеска несколькими обсерваториями (табл. 2) приведены результаты наблюдения этих обсерваторий. Значение задержки более 20 часов соответствует наблюдениям областей локализации всплесков определенными триангуляцией с помошью сети космических аппаратов (IPN) со значительным запозданием или же неблагоприятными погодными условиями в первые сутки после всплеска. Отмечены события, упомянутые в тексте

ОТ от GRB030329 (Ефимов и др., 2003). Эти обсерватории составили основу сети СНГ для проведения регулярных наблюдений за послесвечением гамма-всплесков. Исследования оптического компонента гамма-всплесков сложны, так как невозможно предсказать заранее ни время появления источника, ни его координаты. Вероятность обнаружения послесвечения и дальнейшее его успешное исследование напрямую зависит от времени начала наблюдений: чем раньше начаты наблюдения после регистрации космическими обсерваториями гамма-всплеска, тем выше их эффективность, так как кривая блеска описывается, в целом, законом $\sim t^{\alpha}$, где t = T - T0 – время после начала всплеска в момент T0, а $\alpha = -(0.5 - 2)$. Кроме того, яркие оптические события, связанные с ГВ, происходят редко, что ограничивает возможность исследования спектральных и поляризационных свойств ОТ. Результаты и телескопы, на которых проводились наблюдения в 2002–2005 гг., представлены в таблицах 1 и 2. Рисунок 1 показывает блеск зарегистрированных событий в зависимости от запаздывания до начала наблюдений после ГВ и позволяет оценить

эффективность применения телескопов с различной апертурой. В двух случаях (GRB050117 (Хилл и др., 2005) и GRB051008 (Румянцев и др., 2005)) найдены кандидаты в ОТ, в других – обнаружения были сделаны зарубежными обсерваториями. В остальных случаях в результате наблюдений был получен верхний предел. Повышение плотности наблюдений в интервале 5–10 часов (рис. 1) соответствует характерному времени готовности сети.

Если кривую блеска не разбивать на фазы, по-видимому соответствующие различным механизмам излучения (синхронное с излучением в гамма-диапазоне (prompt emission) – эта фаза равна длительности гамма-всплеска 0.01 - 100 с и фаза послесвечения (afterglow)), то наиболее ярким ($V \sim 8.5$) зарегистрированным до сих пор является ОТ всплеска GRB990123 (Акерлоф и др., 1999). Распределение длительностей всплесков описывается бимодальным логарифмически нормальным распределением: одна мода соответствует "коротким" событиям с длительностью ≥ 2 с (примерно 25% от общего числа), другую составляют всплески с длительностью более 2 с (Мазец и др., 1981, Ковелиоту и др., 1993).

Самая ранняя успешная регистрация ОТ в наших наблюдениях началась через 10.5 минут для GRB050922C (Андреев и др., 2005). Таким образом, все представленные ниже результаты относятся к фазе послесвечения. Для регистрации оптического излучения синхронно с излучением в гаммадиапазоне необходимы роботизированные комплексы, с временем готовности менее характерной длительности всплеска (см. напр. Вестранд и др., 2002), или же синхронные наблюдения одной и той же площадки неба совместно с космическими гамма-телескопами (см. напр. Позаненко и др., 2003). Яркие события позволяют регистрировать послесвечение в течение месяцев после гаммавсплеска, однако в большей части наблюдения послесвечения – это широкополосная фотометрия, позволяющая получить несколько точек для кривой блеска, реконструируемой затем объединением наблюдений большого числа обсерваторий.

	Телескоп	Апертура	Детектор	Расположение
	ЗТШ	2.6 м, F/4	CCD FLI IMG-1001E	Научный, КрАО
	A3T-11	1.25 м, $F/12.8$	UBVRI Photopolarimeter	,_,
	A3T-8	$0.7 \mathrm{m}, \mathrm{F}/4$	CCD Apogee AP-7p	,_,
	AT-64	0.64 м, F/1.4	CCD SBIG ST-8	,_,
	K-380	0.35 м, F/13	CCD SBIG ST-7	,
	Цейсс-600	0.6 M, $F/7.8$	CCD FLI IMG-1001E	Научный, Крымская станция ГАИШ
	A3T-22	1.5 м, F/7.74	CCD SITe	Майданак, Узбекистан
	Цейсс-1 м	1 м, F/13	CCD K-585	САО РАН, Нижний Архыз
	Цейсс-600	0.6 м	TV-CCD VS	Станция наблюдения Нижний Архыз (НИИ ПП)
40	см астрограф	0.4 м	CCD FLI IMG-6303	УАФО, Уссурийск
	Цейсс-600	0.6 m, F/12.5	CCD S1C	пик Терскол, Институт астрономии РАН

• Таблица 1. Телескопы, на которых проводились наблюдения

2 Спектральная эволюция

В общепринятой модели послесвечения для большей части ГВ, так называемых "длинных" всплесков с длительностью более ~ 2 секунд, релятивистский джет с гамма-фактором Γ и углом раствора $\theta = 0.01 - 0.1$, направлен в сторону наблюдателя. Степенная кривая блеска послесвечения испытывает излом, когда наблюдатель начинает видеть все основание конуса джета, в то время как до излома была видна лишь часть конуса, т.е. тогда, когда угол раствора конуса излучения релятивистских электронов ~ $1/\Gamma$ становится больше θ . Предсказанный излом

• Таблица 2. Результаты наблюдений в 2002-2005 гг.

(¹)Название космической обсерватории зарегистрироваший ГВ: (S)wift, (H)ETE-2, (I)NTEGRAL, IPN- Interplanetary Network; (²)дата наблюдения или *среднее* время (UT), на которое приведен результат, в долях календарного дня; (³)оценка блеска (без поправки за галактическое поглощение), ошибка измерения 1 σ указана в скобках, верхний предел приведен на уровне 3 σ ; результаты в таблице являются более точными и могут не совпадать с приведенными в GCN; (⁴)время до начала наблюдения ОТ (в часах) от момента регистарции ГВ; (⁵)указано где представлен или использован результат: число обозначает номер циркуляра GCN = GRB Coordinates Network (Бартелми и др.), * – данная статья

GRB	KA ¹	Дата ²	Обсерватория/ Телескоп	Результат ³	Δt^4 час.	Ref^5
020625	Н	020625	CrAO/AZT-8	R>18.2	10.5	1444
020812	Η	020812	CrAO/K-380	V>17.5	9.5	1496
		020812	Kosmoten/Z600	V>14.5	8.2	1479
		020813	SAO/Z1000	R>22	23.8	1527
020813	Н	020813	SAO/Z1000	R=19.70(.25)	16	1528
021004	Η	04.283	SAO/Z1000	R=17.88(.05) V=18.33(.07) B=18.87(.10)	6.8	1606 *
		08.400	,	R=20.9(.3)	57.6	1654
021016	Η	021017	Kosmoten/Z600	V>16.5	34.5	-
		021017	CrAO/AZT-8	N/A	35.1	-
021113	IPN	021113	CrAO/AZT-8	V>18.0	9.2	1690
021204	Η	021204	Kosmoten/Z600	V>16.5	5.4	-
		021204	CrAO/AZT-8	R>20.0	7.1	-
021211	Η	021211	CrAO/AT-64	V>19.5	9.3	1752
030226	Η	030226	CrAO/AT-64, AZT-8	R=19.5(.2)	14.2	1908
030227	Ι	030227	CrAO/AT-64, K-380	R>19.5	8.2	1926
030324	Н	030324	CrAO/AT-64	R>20.0	7.1	1964
030328	Н	28.78	CrAO/AT-64, K-380	R=20.9(.2)	6.7	1991
		29.75	MAO/AZT-22	R=22.1(.3), B=22.8(.4)	30.6	2192
030329	Н	030329	CrAO/K-380	VRI photometry	5.71	2005 2028 2050
			AT-64	unfiltered photometry	6.23	2067 2083 2097
			AZT-11	UBVRI photo-/polarimetry	6.90	2144 2146 *
			Kosmoten/Z600	unfiltered $1/25$ s time resoled photometry	7.55	2077 2084 2098
			CrAO/AZT-8	R photometry	11.41	2160 2191 2219
		030330-	MAO/AZT-22	BVRI photometry		2288
		030629				
030413	IPN	030414	CrAO/AT-64	N/A	35	-
	IPN	030414	Kosmoten/Z600	R>16	17.2	
030414	IPN	030414	CrAO/AT-64	N/A	9.3	-
030429	Η	030429	CrAO/AT-64, K-380	R=20.20(.15)	7.6	2190 2218
030501	Ι	030501	CrAO/AT-64, K-380	R=20.1	18.8	2202
030823	Η	030823	CrAO/AT-64	R>20.5	9.7	-
040319	Η	040319	CrAO/AT-64	R>18.0	11.7	-
040403	Ι	040403	CrAO/AT-64	R>20.0	12.7	2565
040422	Ι	040422	CrAO/ZTSh	R>21.0	16.5	2580
040624	Ι	040625	CrAO/AT-64	R>18.7	33.6	2619
040827	Ι	040829	CrAO/AT-64	R>17.5	55.2	-
040924	Η	040924	CrAO/K-380	R>19.7	8.48	2753
041006	Η	06.6604	MAO/AZT-22	R=19.22(.03) V=19.76(.03),	3.55	2775 *
				B=20.01(.02) I=19.05(.07)		
		06.8103	CrAO/AT-64	R=19.80(.26)	4.88	2798
		07.850	CrAO/AT-64	R>20.4		
		10.811	MAO/AZT-22	R=23.3(.3)		
		12.849		R>23.3		
		13.799		R>23.0		
041015	Ι	041016	$\rm CrAO/ZTSh$	R>22.0	34.08	2828
050117	\mathbf{S}	050117	MAO/AZT-22	R=23.6(.7)	3.2	2958, Hill et al.
		050406	$\rm CrAO/ZTSh$	R>23.4		

050319	\mathbf{S}	050319 MAO/AZT-22	R=20.12(.10)	8.1	$3124 \ 3140$
		050320			
		050321			
050401	\mathbf{S}	050401 MAO/AZT-22	R=22.2(.2)	9.1	3147,
		050401 $CrAO/AT-64$	$R{>}19.7$	27.6	Watson et al
		SAI/Z600	R>19.5		
050408	Η	050408 $CrAO/AT-64$	R>19.9	2.0	3206, 3261
		050409 MAO/AZT-22	R=22.55(.35)	26.4	
050410	\mathbf{S}	050410 CrAO/AT-64	R>19.9	5.7	3229
050416	S	050416 MAO/AZT-22	R=20.85(.12)	4.5	3274
050509B	\mathbf{S}	050509 MAO/AZT-22	$R{>}23.5$	12.8	3455
		050509 CrAO/ZTSh	R>24.0	14.4	
		050509	I>22.8	14.8	
050525A	\mathbf{S}	050525 UAPhO/Z400	R>15.9	14.0	3492
		050525 CrAO/AT-64	R>19.5	19.5	
		30.812 MAO/AZT-22	R>23.1	139.2	*
		31.780	R>23.6	163.2	
		31.296	R>24.1	151.1	
050510	0	050707 CrAO/ZTSh	1>21.8	1.0	2425
050712	S	050712 UAPhO/Z400	R>15.0	1.0	3635
		050712 MAO/AZT-22	R>19.0	9.1	
0505100	0	050712 CrAO/AZT-8	R>19.5	9.6	2501
050713B	S	050713 MAO/AZT-22	R>23.2	6.0	3701
		050714			
050000	0	050715	D 10.00(10)		2511
050802	S	02.659 MAO/AZT-22	R=18.92(.13)	5.65	3744
		02.783 CrAO/ZTSh	R=20.73(.03) V=20.92(.03),	8.60	
		0.9 CTC = MAO (ATT) 0.0	B=21.54(.04) $I=20.34(.06)$		*
		03.070 MAO/AZ1-22	R = 21.37(.18)		
		04.903 $CrAO/21Sn$	R > 23.0 V = 23.3(.3) I = 23.3(.3)		
050803	C	$\frac{05.070}{05002} \text{ CrAO}/\text{ZTSh}$	$\frac{R > 22.0}{D > 22.6}$	9.1	2760 2792
000805	a	050804 CFAO/215h	R>22.0	2.1	3100 3183
050813	S	050813 MAO / AZT 22	I>21.0	10.0	3857
050815	S	050816 MAO/AZT-22	B>22.5	24	3862
050824	S	0825 904 MAO/AZT-22	R = 21.17(.09)	21	3897
000021	0	0903.814 CrAO/ZTSh	B = 22.68(12)	236	*
		0904 839	B=23.00(.08)	261	
		0916.825 MAO/AZT-22	B=22.8(.5)	524	
		1007.849 CrAO/ZTSh	R=24.0(.3)	1051	
		1107.736	R=23.94(.23)	1794	
050904	S	050904 CrAO/ZTSh	R>23.5	18.8	3939
050922C	S	050922 Terskol/Z600	R=15.9(.07)	0.175	4016 4048
050922B	S	050922 UAPhO/Z400	R>16.0	0.25	4047
050908	S	050908 MAO/AZT-22	R=21.88(.25)	15.8	4049
051006	S	051007 CrAO/ZTSh	R>20.5	26.4	4094
		051008.103	R=22.20(.15)	52.8	
051008	S	051008 CrAO/ZTSh	R=22.19(.27)	0.5	4081 4087 *
051016B	S	051016 MAO/AZT-22	R=21.43(.24)	4.9	4185
051021A	H	051021 SAI/Z600	R=21.9(.2)	7.0	4159
051105	S	1105.60 MAO/AZT-22	R>22.1	7.6	4349
		1201.58	R>21.8		
051109A	S	051109 CrAO/AT-38	R=20.7(.2)	15.5	4273
051111	ŝ	051111 MAO/AZT-22	R=19.78(.14) B>19.0	12.3	4307
051117B	S	051117 MAO/AZT-22	R>22.1	8.4	4308
051211B	I	051212 MAO/AZT-22	R>22.5	19.3	4421
	-	051217	R>22.9	10.0	
051221A	S	22.631 MAO/AZT-22	R=21.76(.13)	37.2	4613
051221B	S	051222 MAO/AZT-22	R>22.3	38.4	4612
-		/			

`Космические гамма-всплески ...

(см. напр. Родс, 1997) был обнаружен по мере увеличения точности фотометрических наблюдений. Время появления излома t_b позволяет оценить угол раствора конуса джета. (В настоящее время излом регистрируется у большинства ОТ.) Затем ОТ продолжает степенное падение, но кривая блеска формируется не только степенным падением ОТ, но и возникающей сверхновой. В дальнейшем на месте ОТ наблюдается родительская галактика. (Эта схема упрощенно описывает поведение кривой блеска: обнаруживаются значимые отклонения от степенного падения на интервале 1–10 часов в начальный период 1–3 дня (напр. Липкин и др., 2004) и на интервале нескольких дней в заключительной фазе послесвечения (Матесон и др., 2003; Ибрагимов и др., 2003). Наиболее яркие события дают возможность проследить раннюю эволюцию цвета до момента, когда сверхновая начинает оказывать значительный вклад в формирование кривой блеска. Поэтому поиск изменения цвета является важной задачей диагностики механизма излучения.

GRB021004 (t_b = 8.62 \pm 0.16 d,z = 2.3) наблюдался на телескопе Цейсс-1 м в полосах BVR_c в период с 0.292 d до 0.500 d после всплеска (Барсукова и др., 2002). (Здесь и далее использованы оценки t_b из работы Зех и др., 2005, оценки z – из таблицы Грайнер, 2006). Результаты показывают, что за 5 часов не обнаруживается изменений цвета, превышающих ошибки измерения: 0.09 m для $\Delta(V - R_c)$ и 0.12 m для $\Delta(B - V)$ (Горанский и др., 2003). GRB041006 $(t_b=0.23\pm0.04~d,z=0.716)$ наблюдался на АЗТ-22 от 0.148 d до 0.183 d в полосах BVRI (Кахаров и др., 2004), т.е. именно во время излома; показатели цвета на среднее время ${
m T0}+0.168~{
m d}$ составляют $B-V=0.25\pm0.03$ и $B-R=0.79\pm0.04$. Наблюдения, проведенные до излома (T0 + 0.0674 d) $B-V=0.28\pm0.03$ (Да Коста и Ноэл, 2004) и после излома (T0 + 1.74 d) $B-R=0.74\pm0.08$ (Гарнавич и др., 2004) указывают на неизменность показателей цвета вдоль кривой блеска в пределах ошибок. Показатели цвета исправлены за галактическое поглощение E(B-V) = 0.026(Шлегель и др., 1998). Изменение цвета $\Delta(B-R) = 0.14 \pm 0.09$ за время наблюдения 1.88 часа также находится в пределах ошибок измерения. Ахроматизм начальной фазы кривой блеска послесвечения подтверждает общепринятую геометрическую интерпретацию причины излома кривой блеска, а также единый механизм излучения до и после излома. Таким наиболее вероятным механизмом считается синхротронное излучение.

Является ли ахроматизм начальной фазы кривой блеска послесвечения стандартным проявлением гамма-всплесков? GRB030329 ($t_b = 5.27 \pm 0.02 \ d, \ z = 0.168$) из-за своей яркости является одним из наиболее изученных всплесков. Оптический транзиент этого всплеска в разных фазах наблюдался большинством обсерваторий мира; одно из самых ранних спектрополяриметрических UBVRI наблюдений (в интервале 0.28–0.33 d после всплеска) было проведено на телескопе A3T-11 в КрАО (Ефимов и др., 2003). Изменение цвета $\Delta(B - R)$ за этот период составило 0.1 m (показатели цвета исправлены за галактическое поглощение E(B - V) = 0.025 (Шлегель и др., 1998)). О монотонном изменении цвета $\Delta(B - R) = 0.1$ в более широком диапазоне времени 0.28–0.83 d сообщено в работе Липкин и др., 2004. В одной из моделей изменение показателя цвета соответствует прохождению уменьшающейся характерной частоты излома синхротронного спектра ν_c (cooling brake) через оптический диапазон спектра OT (Галама и др., 2003). Зарегистрированное направление изменения цвета соответствует этой модели.

Модель синхротронного излучения релятивистского джета предсказывает также ахроматизм кривой блеска до и после прохождения ν_c через оптический диапазон. В рамках точности измерений в настоящее время ахроматизм кривой блеска в начальной фазе послесвечения является стандартным свойством ОТ.

3 Самый "темный" всплеск

Примерно для 45% всплесков, зарегистрированных рентгеновским телескопом XRT/Swift в 2005 г., оптический компонент не был найден несмотря на интенсивные поиски наземными и космическими телескопами (Моретти и др., 2006). Такой результат уже нельзя списать на позднее начало наблюдений – в настоящее время телескопы-роботы начинают поиски через 1-2 минуты после начала регистрации гамма-всплеска; другие свойства таких событий (длительность, спектр, кривая блеска в гамма-диапазоне и рентгеновское послесвечение) ничем не отличаются от обычных всплесков

Рис. 2. GRB051008: время начала всплеска, зарегистрированного обсерваторией Swift, T0 = 08/10/200516:33:21.31 (UT); приведен суммарный снимок поля всплеска, экспозиция 15х60 s, среднее время снимка 17:14 (Т0 + 41 m); Отмечены галактика (1) и переменный объект (2). Координаты (J2000) и блеск объектов: (1) R.A. = 13:31:29.96 Dec = + 42:05:52.26, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96, R = 21.50 \pm 0.13; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96; (2) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R.A. = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = + 42:05:47.96; (3) R = 1 3:31:29.51 Dec = 22.19±0.27 (ошибка в определении координат составляет 0.3"). Наблюдения через 23 минуты (среднее время 17:37 (T0 + 64 m), экспозиция 22x60 s) показывает отсутствие источника (2). Блеск и предельная звездная величина обнаружения для этой эпохи составляют (1) R = 21.32±0.13; (2) R>22.6. Оценка блеска галактики (1) на полной сумме всех кадров 37х60 s (среднее время T0 + 55 m) составляет $R=21.4\pm0.1,$ предельная звездная величина – R > 22.8. (Предельная звездная величина приведена на уровне 3*σ*; оценки блеска даны без учета галактического поглощения E(B-V) = 0.01 (Шлегель и др., 1998)); астрометрия и фотометрия сделаны на основе каталога USNO A2.0 (Моне и др., 1998). Показаны области определения ошибок: гаммателескопом ВАТ – большая окружность, радиус 0.8' (Парсонс и др., 2005) и рентгеновским телескопом XRT: начальная 6.5" (Перри и др., 2005а) и скорректированная (малая окружность) 3.2" (Моретти и др., 2006). Области ВАТ и XRT не пересекаются, что может быть вызвано точностью определения систематических ошибок. Рисунок дает представление о характерной области ошибок, определяемых в режиме реального времени на борту обсерватории Swift, и после наземной обработки

с детектируемым оптическим послесвечением. Это означает, что физика явления, по-видимому, одинакова для этих групп всплесков. Всплески, для которых отношение потока в оптическом диапазоне F_O к потоку в рентгеновском диапазоне F_X является аномально малым, называют "темными" гамма-всплесками (Якобсон и др., 2004). Причина появления темных всплесков не ясна - это может быть вызвано огромными космологическими расстояниями, на которых расположен источник, и поглощением оптического излучения на луче зрения в линиях ("лес" линий L_{α}), существенным поглощением в родительской галактике (или самом источнике), малой внутренней светимостью источника в оптическом диапазоне. Последнее может быть объяснено ассиметрией джетов, возникающих в противопложных направлениях. Действительно, джет, направленный на наблюдателя, может не сопровождаться оптическим послесвечением (темный всплеск), в то время как джет в противоположном направлении генерирует послесвечение, но остается недоступным для наблюдателя. На возможность геометрической интерпретации, т.е. существования двух противоположно направленных джетов, указывает и приблизительно равная доля всплесков с/без оптического послесвечения. В таком случае ситуация могла бы быть аналогична радиогалактикам с узкими эмиссионными линиями (narrow-emission line), где количество галактик с двумя джетами примерно равно количеству галактик с одним джетом (Лехе и др., 2000).

Одним из самых темных событий является GRB051008, имеющий аномально малое отношение F_O/F_X . Он наблюдался на ЗТШ через 32 минуты после всплеска (Румянцев и др., 2005). Вблизи

`Космические гамма-всплески ...

55

области ошибок рентгеновского источника XRT были найдены два объекта (рис. 2), причем объекта номер 2 за 23 минуты между двумя эпохами наблюдения исчез. Формально оба объекта не попадают в скорректированную 90% область ошибок XRT для этого всплеска (рис. 2) и лежат на расстоянии 6.1"и 7.7" от центра области (окружность радиусом 3.2"). Коррекция включает уменьшение систематической ошибки определения координат телескопом XRT от первоначальной величины 6.5" до 3.2" (Моретти и др., 2006). Учитывая малую выборку (31 событие), по которой проводилась коррекция, нельзя исключить, что систематическая ошибка со временем претерпит изменение в большую сторону. Таким образом, мы рассматриваем переменный источник 2 как оптический транзиент GRB051008.

Оценка показателя степенного закона падения кривой блеска GRB051008 из наших наблюдений $\alpha_O < -0.85$ не противоречит показателю степенного закона падения кривой блеска в рентгене $\alpha_X = -0.86$ за тот же период времени. Кривая блеска рентгеновского послесвечения описывается степенным законом с изломом $lpha_{X1}=-0.86\pm0.07$ от T0+51~m до точки излома $t_b=275\pm35~m$ и далее $\alpha_{X2} = -2.0 \pm 0.1$ (Перри и др., 2005б). Будучи связанный с джетом, столь ранний излом предполагает, с одной стороны, близкое расположение источника (z < 0.36), а с другой – появление сверхновой с максимумом блеска $R\,=\,21.9$ (в предположении модели сверхновой 1998bw (Ферреро и др., 2005)). Однако поиск, выполненный через 21.5 день после всплеска, не дал положительного результата до $R_c > 22.5$ (Канн и др., 2005). Если предположить, что ОТ (2) связан с галактикой (1), то угловое расстояние между ними 6.6" также говорит в пользу близкого расположения источника всплеска. С другой стороны, эмпирическая оценка красного смещения, сделанная на основе соотношения значения $E_p = 865(-136, +178) \ keV$ (Голенецкий и др., 2005), где E_p соответствует максимуму в энергетическом спектре гамма-всплеска, дает величину $z = 5.2 \pm 1.3$ (Пеланжон и др., 2005). В этом случае излом кривой блеска в рентгене $t_b = 275 \ m$ можно было бы объяснить переходом от фазы синхронного излучения к фазе послесвечения (действительно, время в системе наблюдателя $t_b = 275 \, m$, соответствует в системе отсчета источника всплеска времени $t_b/(1+z) = 44 m$). Однако измеренная длительность события составляет $\sim 280 \ s$ (Голенецкий и др., 2005). (Интересно отметить, что гамма-всплески, регистрируемые на значительных космологических расстояниях, позволяют эффективно заглянуть в самое начало всплеска в системе отсчета источника.) Кроме того, значительное красное смещение привело бы к чрезвычайно большой полной излученной энергии $E_{iso} > 10^{54} \ erg$ (в предположении изотропного излучения). Сравнение в гамма-диапазоне GRB051008 ($E_p = 865 \ keV$, показатель степенного спектра $\gamma = 1.10 \pm 0.05$) с известными ГВ, имеющими близкие значения красного смещения, GRB050904 (z = 6.29, $\gamma = 1.34 \pm 0.06$) и GRB060206 (z = 4.048, $E_p = 75.4 \pm 19.5 \ keV$, $\gamma = 1.06 \pm 0.34$) показывает более жесткий спектр и большую переменность кривой блеска GRB051008, что говорит в пользу близкого расположения источника. Столь противоречивые косвенные оценки расстояния не позволяют сделать однозначный вывод в пользу какой-либо из моделей, но внутреннее поглощение и/или малая светимость источника являются предпочтительными. Широкополосная фотометрия могла бы пролить свет на природу GRB051008, однако, в ближайшем к началу всплеска наблюдении (UltraViolet/Optical Telescope (UVOT) на борту обсервтории Swift) получен лишь предел v > 18.2 на время T0 + 50 m (Бривельд и др., 2005).

4 Заключение

Из всех зарегистированных всплесков можно отметить еще несколько событий. Яркий всплеск GRB030329 продемонстрировал наличие слабой линейной поляризации в первый день после всплеска (Ефимов и др., 2003) и наблюдался в течение трех месяцев (Ибрагимов и др., 2003). GRB050824 (z = 0.83) наблюдался вплоть до полного исчезновения ОТ и проявления на его месте через ~75 дней родительской галактики с блеском $R = 23.94 \pm 0.23$. При наблюдении "короткого" ($T \sim 0.2 s$) всплеска GRB051221A (z = 0.55) была получена оценка блеска ОТ (Шарапов и др., 2006), согласующаяся со степенной кривой блеска без излома (Содерберг и др., 2006). До сих пор (2005 г.) оптическое послесвечение было обнаружено лишь у двух ГВ этого класса, что сразу же позволило определить шкалу расстояний "коротких" всплесков как умеренно космологическую (z < 1).

Вопросы о наличии джета, а также феноменология кривой блеска в оптике остаются открытыми. Предполагается, что источником по крайней мере части "коротких" всплесков, является слияние тесной двойной системы компактных источников, например, нейтронных звезд.

Из результатов наших наблюдений следует, что телескопы с апертурой менее 1 м могут быть эффективны dля поиска ОТ в течение суток после регистрации ГВ, в то время как телескопы с большей апертурой эффективны и в последующие дни (рис. 1). Однако при наблюдении ярких событий, таких как GRB030329, телескопы с малой апертурой способны давать значимые результаты в течение нескольких дней. Улучшение точности локализации ГВ космическими обсерваториями (до 2000 г. CGRO/BATSE – 3°, до 2004 г. HETE/WXM – 30', HETE/SXC – 4', 2005 г. Swift/BAT – 3', Swift/XRT – 6'') позволяет в настоящее время эффективно проводить поиск ОТ на телескопах с умеренным полем зрения. С момента первой публикации о всплесках (Клебесадел и др., 1973) в гамма-диапазоне зарегистрировано ~ 3000 событий, в то время как общее колические наблюдения каждого всплеска, зарегистрированного космическими обсерваториями. Синхронные оптические наблюдения чрезвычайно важны для выяснения природы "центральной машины" всплеска, таких наблюдений насчитывается всего лишь 4. (Данные о количестве приведены на конец 2005 г.)

В целом, создание сети для координированных наблюдений ГВ и включение таких наблюдений в разряд приоритетных задач оправдало себя. Расположение обсерваторий в различных часовых поясах дало возможность продлить наблюдения послесвечения и увеличить эффективность регистрации ОТ.

5 Благодарность

Работа поддержана в 2003-2004 гг. грантом CRDF RP1-2394-MO-02, в 2005 г. частичная поддержка была оказана грантом министерства образования и науки РФ.

Литература

Акерлоф и др. (Akerlof C., Balsano R., Barthelmy S., et al.) // Nature. 1999. V. 398. P. 400.

Андреев М., Позаненко А. (Andreev M., Pozanenko A.) // GCN. 2005. N. 4016.

Барсукова Е.А. и др. (Barsukova E.A., Goranskij V.P., Beskin G.M., et al.) // GCN. 2002. N. 1606.

Бартелми и др. (Barthelmy, S.D. et al.) // GRB Coordinates Network, http://gcn.gsfc.nasa.gov.

Бривелд и др. (Breeveld A., Marshall F., Blustin A., et al.) // GCN. 2005. N. 4079.

Вестранд и др. (Vestrand W.T., et al.) // SPIE. 2002. V. 4845. P. 126.

Ватсон и др. (Watson D., Fynbo J.P.U., Ledoux C., et al.) // submitted to Astrophys. J. 2005.

Галама и др. (Galama T., Frail D.A., Sari R., et al.) // Astrophys. J. 2003. V. 585. P. 899.

Гарнавич и др. (Garnavich P., Zhao X., Pimenova T.) // GCN. 2004. N. 2792.

Голенецкий С. и др. (Golenetskii S., Aptekar R., Mazets E., et al.) // GCN. 2005. N. 4078. Горанский В. и др. // Частное сообщение. 2003.

Грайнер и др. (Greiner J., Klose S., Reinsch K., et al.) // Nature. 2003. V. 426. P. 157.

Грайнер (Greiner J.) // http://www.mpe.mpg.de/ jcg/grbgen.html. 2006.

Да Коста, Ноел (Da Costa G., Noel N.) // GCN. 2004. N. 2789.

Ефимов Ю. и др. (Efimov Y., Antoniuk K., Rumyantsev V., et al.) // GCN. 2003. N. 2144.

Зех и др. (Zeh A., Klose S., Kann D.A.) // astro-ph/0509299. 2005.

Ибрагимов М.А. и др. (Ibrahimov M.A., Asfandiyarov I.M., Kahharov B.B., et al.) // GCN. 2003. N. 2288.

Кан и др. (Kann D.A., Ferrero P., Stecklum B., et al.) // GCN. 2005. N. 4246.

Кахаров Б. и др. (Kahharov B., Asfandiyarov I., Ibrahimov M., et al.) // GCN. 2002. N. 2775.

Клебесадел и др. (Klebesadel R., Strong I., Olson R.) // Astrophys. J. 1973. V. 182. L. 85.

Ковелиоту и др. (Kouveliotou C., Meegan C.A., Fishman G.J., et al.) // Astrophys. J. (L). 1993. V. 413. P. 101.

`Космические гамма-всплески ...

- Коста и др. (Costa E., Frontera F., Heise J., et al.) // Nature. V.387. P. 783.
- Лехе и др. (Leahy, J.P., Bridle, A.H., Strom R.G.) // http://www.jb.man.ac.uk/atlas/. 2000.
- Липкин и др. (Lipkin Y.M., Ofek E.O., Gal-Yam A., et al.) // Astrophys. J. 2004. V. 606. P. 381.
- Мазец Е.П. и др. (Mazets E.P., Golenetskii S.V.; Ilinskii V.N., et al.) // Astrophys. Space Sci. 1981. V. 80. P. 3.
- Матесон и др. (Matheson T., Garnavich P.M., Foltz C., et al.) // Astrophys. J. (L). 2003. V. 582. P. 5. Моне и др. (Monet D.G., et al.) // USNO-A2.0 Catalog (Flagstaff: USNO). 1998.
- Моретти и др. (Moretti A., Perri M., Capalbi M., et al.) // astro-ph/0511604. 2005.
- ван Парадийс и др. (van Paradijs J., Groot P.J., Galama T., et al.) // Nature. V.386. P.686.
- Парсонс и др. (Parsons A., Barbier L., Barthelmy S., et al.) // GCN. 2005. N. 4075.
- Пеланжон (Pelangeon A., Atteia J.-L.) // GCN. 2005. N. 4086.
- Перри и др. (Perri M., Capalbi M., Burrows D.N.) // GCN. 2005. N. 4073.
- Перри и др. (Perri, M., Capalbi M., Burrows D.N., et al.) // GCN. 2005. N. 4080.
- Позаненко А. и др. (Pozanenko A., Chernenko, A., Beskin, G. et al.) // Proceedings of ADASS XII ASP
- Conference Series. 2003. V. 295. P. 457. (Ed. H. E. Payne, R. I. Jedrzejewski, and R. N. Hook). Pogc (Rhoads J.) // Astrophys. J. (L) 1997. V. 487. P. 1.
- Румянцев В. и др. (Rumyantsev V., Biryukov V., Pozanenko A., et al.) // GCN. 2005. N. 4087.
- Содерберг и др. (Soderberg A., Berger E., Kasliwal M., et al.) // astro-ph/0601455. 2006.
- Соколов В.В. и др. (Sokolov V.V., Kopylov A.I., Zharikov S.V., et al.) // Astron. Astrophys. 1998. V. 334. P. 117.
- Ферреро и др. (Ferrero P., Klose S., Kann A., et al.) // GCN. 2005. N. 4085.
- Хилл и др. (Hill J.E., Morris D.C., Sakamoto T., et al.) // Astrophys. J. 2006. V. 639. P. 303.
- Шарапов Д. и др. (Sharapov D., Ibrahimov M., Pozanenko A., et al.) // GCN. 2006. N. 4613.
- Шлегель и др. (Schlegel D.J., Finkbeiner D.P., Davis M.) // Astrophys. J. 1998. V. 500. P. 525.
- Якобсон и др. (Jakobsson P., Hjorth J., Fynbo J.P.U., et al.) // Astrophys. J. (L). 2004. V. 617. P. 21.