Изв. Крымской Астрофиз. Обс. 109, № 1, 76-84 (2013)

удк 524.31 Содержание хрома и титана в атмосферах А-, F- и G-сверхгигантов в окрестности Солнца

Д.Б. Поклад

НИИ «Крымская астрофизическая обсерватория», Научный, АР Крым, Украина, 98409 poklad@crao.crimea.ua

Поступила в редакцию 17 января 2013 г.

Аннотация. Для 22 А-, F-, G-сверхгигантов в окрестности Солнца (в пределах 700 пс) по спектрам высокого разрешения определены содержания двух химических элементов группы железа – Сг и Ті. Содержание хрома и титана определено по линиям Сг II и Ті II. Среднее содержание хрома составляет log $\varepsilon(Cr) = 5.70 \pm 0.13$, что в пределах ошибки соответствует солнечному содержанию log $\varepsilon_{\odot}(Cr) = 5.64$. Значение среднего содержания титана log $\varepsilon(Ti) = 4.89 \pm 0.10$ с учетом погрешности также очень близко к солнечному содержанию log $\varepsilon_{\odot}(Ti) = 4.95$. Средние содержания Сг и Ті позволяют считать среднюю металличность молодых близкорасположенных звезд идентичной солнечной.

CHROMIUM AND TITANIUM ABUNDANCES IN THE ATMOSPHERES OF A-, F- AND G-SUPERGIANTS IN THE SOLAR NEIGHBORHOOD, by D.B. Poklad. The abundances of two chemical elements of the iron group – Ti and Cr are determined from the high-resolution spectra for 22 A-, F-, G-supergiants in the solar neighborhood (within 700 pc). Chromium and titanium abundances are derived from Cr II and Ti II lines. The mean chromium abundance is $\log \varepsilon(Cr) = 5.70 \pm 0.13$ what within error limits corresponds to the solar abundance $\log \varepsilon_{\odot}(Cr) = 5.64$. The mean titanium abundance $\log \varepsilon(Ti) = 4.89 \pm 0.10$ within errors is very close to the solar abundance as well $\log \varepsilon_{\odot}(Ti) = 4.95$. The mean Cr and Ti abundances allow the mean metallicity of young closely-located stars to be suggested identical to solar.

Ключевые слова: сверхгиганты, химический состав, металличность

1 Введение

Точное определение металличности звездного населения Галактики имеет большое значение при выявлении зависимостей между возрастом звезд, местом их рождения в Галактике и металличностью. Недавно появились работы, в которых показано, что Солнце могло образоваться в более близкой к центру Галактики области, чем та, в которой оно находится в настоящее время. Этот вопрос обсуждается, например, в работе Ниевы и Пржибиллы (2012). В пользу такого вывода могло бы свидетельствовать, к примеру, несовпадение надежно определенной средней металличности близкорасположенных молодых звезд с металличностью Солнца. Металличность межзвездной среды имеет градиент распределения вдоль радиуса Галактики и меняется со временем, в зависимости от скорости звездообразования, которая различна в разных частях Галактики (Андриевский и др., 2004). Если предположить, что Солнце образовалось в области Галактики более близкой к ее центру, но за время своего существования мигрировало от ядра, то, учитывая уменьшение металличности межзвездной среды от центра к периферии, мы должны наблюдать повышенную металличность у Солнца в сравнении с ближайшими молодыми звездами, образовавшимися вблизи своих современных положений.

В нашей предыдущей работе (Любимков и др., 2010) проведено исследование 63 А-, F-, Gсверхгигантов Галактики в окрестности Солнца. А-, F-, G-сверхгиганты – достаточно молодые звезды, в прошлом это B-звезды на стадии главной последовательности. В упомянутой работе общее число программных звезд было разделено на две группы: первая – наиболее близкие к Солнцу, с расстояниями до 700 пс, вторая группа – дальше 700 пс. Для всех звезд был определен ряд фундаментальных параметров: эффективная температура T_{eff} , ускорение свободного падения log g, микротурбулентная скорость V_t , масса M/M_{\odot} , расстояние d, возраст t и содержание железа log ε (Fe) = 7.48 ± 0.09 оказалось практически равным солнечному содержанию log ε_{\odot} (Fe) = 7.50 ± 0.04 (Асплунд и др., 2009).

Традиционно о содержании в атмосферах звезд так называемых «металлов» – химических элементов тяжелее гелия – судят по содержанию железа, поскольку линии железа у А- F- Gзвезд наиболее многочисленны и содержание log *e*(Fe) по ним определяется относительно надежно. Однако для более уверенной оценки металличности необходимо провести более широкое определение содержания металлов. Поэтому в данной работе были добавлены еще два химических элемента – Ті и Сг, которые относятся к группе железа и, так же как и железо, являются индикаторами металличности звезд.

2 Параметры выбранных звезд

Для анализа содержания хрома и титана было выбрано 22 звезды из первой группы звезд (Любимков и др., 2010), расположенных в окрестности Солнца радиусом 700 пс. Среди них три А-, двенадцать F- и семь G-сверхгигантов в диапазоне температур T_{eff} от 5020 до 8530 К, а массы распределены от 4.2 до 14.9 М/М. Все рассматриваемые звезды имеют скорость вращения vsini ≤ 35 км/с, поскольку при более высоких значениях vsini блендирование линий становится слишком сильным. Параметры моделей атмосфер для отобранных звезд – температура $T_{\rm eff}$, ускорение силы тяжести на поверхности звезды log g, микротурбулентная скорость V_t , а также расстояния d и массы M/M_{\odot} взяты из предыдущей работы (Любимков и др., 2010). Нужно отметить, что массы звезд были определены с использованием эволюционных треков (Кларет, 2004) и найденных нами $T_{\rm eff}$ и log g, а расстояние было найдено по уточненным данным измерений тригонометрических параллаксов *Hipparcos* в новой редукции (Ван Лееувен, 2007). Такие высокоточные измерения тригонометрических параллаксов и вычисленные по ним расстояния до звезд позволили с более высокой степенью надежности определить методом звездных параллаксов значения ключевых фундаментальных параметров сверхгигантов log g и затем T_{eff}. Как показано в работах Любимкова и др. (2009, 2010), определение температуры и ускорения силы тяжести этим методом дает возможность использовать для дальнейшего анализа более точно подобранные модели звездных атмосфер.

3 Анализ содержаний Cr и Ti

Анализ содержаний Cr и Ti проводился по измеренным эквивалентным ширинам спектральных линий ионов Cr II и Ti II. Использование линий ионизированных атомов Cr II и Ti II для ЛТР-

анализа (ЛТР – локальное термодинамическое равновесие) обусловлено тем, что они в меньшей степени подвержены влиянию эффектов не-ЛТР, чем линии нейтральных атомов Cr I и Ti I. Любимковым и др. (2009) на примере F-сверхгиганта α Lep продемонстрирована разница в определениях содержаний по линиям нейтральных атомов и ионов для ряда элементов (Cr, Mn, Fe) группы железа. В отличие от линий ионов, линии нейтральных атомов дали заниженное содержание элементов.

В работе Боярчука и др. (1985) исследовались эффекты отклонений от ЛТР для нейтральных атомов и ионов железа в атмосферах F-сверхгигантов. Было показано, что в верхних слоях атмосфер таких звезд существует повышенная ионизация атомов Fe I, вследствие чего подавляющее большинство атомов железа пребывает в ионизированном состоянии. Следовательно, использование эквивалентных ширин линий Fe I при определении содержания железа легко может привести к существенно искаженным результатам, в то время как при использовании линий ионов железа искажения будут минимальны.

Различия содержаний, найденных по линиям нейтральных атомов и их ионов в работе Любимкова и др. (2009), по аналогии с железом можно отнести к проявлению не-ЛТР эффектов в силу сходства строения атомов у элементов группы железа.

Отсюда следует вывод, что ЛТР-анализ содержания элементов группы железа следует проводить по линиям ионов.

4 Списки линий и измерение эквивалентных ширин

Анализ содержаний хрома и титана проводился по спектрам высокого разрешения, полученным на 2.7-м Harlan J. Smith телескопе обсерватории Мак Дональд с помощью кроссдисперсионного эшеле-спектрографа (Тулл и др., 1995), использовавшимися нами в предыдущих работах (Любимков и др., 2010, 2011, 2012).

Следует отметить, что спектры исследуемых поздних F- и G-звезд блендированы большим числом различных взаимоперекрывающихся линий, поэтому измерение эквивалентных ширин непосредственно по профилям спектральных линий для этих звезд сильно осложнено. Кроме того, погрешности измерений эквивалентных ширин ощутимо возрастают с увеличением скорости вращения vsini, вследствие чего точность анализа существенно снижается. Поэтому уверенные измерения эквивалентных ширин спектральных линий у звезд со скоростью вращения vsini > 35 км/с произвести не удалось. Для большинства сверхгигантов из рабочего списка звезд характерны асимметричные протяженные крылья профилей спектральных линий, что в свою очередь также влияло на точность измерений.

Все атомные данные используемых линий, включая силы осцилляторов log *gf* и потенциалы возбуждения E_l, были взяты из базы атомных данных VALD (Купка и др., 1999; Хейтер и др., 2008). Использованные в работе списки линий приводятся в табл. 1 и 2.

Отбор линий проводился на основе анализа синтетических спектров, рассчитанных с помощью программы SynthV (Цымбал, 1996) для каждой звезды. Синтетические спектры сравнивались с наблюдаемыми, затем отбирались линии с наиболее надежно определяемыми профилями и с наименьшими искажениями, вызванными блендированием. Для большинства звезд, из-за специфических форм профилей наблюдаемых линий, не удалось с необходимой точностью подогнать синтетические спектры, по которым было бы возможно определить содержания элементов. Вероятно, такая форма профилей вызвана изменяющимся с высотой значением микротурбулентной скорости в протяженных атмосферах сверхгигантов. Далее по эквивалентным ширинам отобранных линий определялись содержания Сг и Ті и статистическим методом выявлялись и исключались линии, дающие систематические ошибки. Таким методом, отдельно для каждого спектрального класса, а в ряде случаев для отдельных

звезд, был создан свой список линий по каждому элементу. Общие списки линий представлены в табл. 1 и 2.

Cr II λ (Å)	E _l (eV)	log gf	Cr II λ (Å)	E _l (eV)	log gf	Cr II λ (Å)	E _l (eV)	log <i>gf</i>
4037.972	6.487	-0.679	4618.803	4.074	-1.084	5305.853	3.827	-2.160
4051.930	3.104	-2.331	4634.070	4.072	-1.236	5308.408	4.071	-2.058
4242.364	3.871	-1.363	4812.337	3.864	-2.125	5310.686	4.072	-2.408
4252.632	3.858	-2.054	4824.127	3.871	-1.085	5313.563	4.074	-1.779
4261.913	3.864	-1.560	4836.229	3.858	-2.042	5334.869	4.072	-1.826
4275.567	3.858	-1.736	4848.235	3.864	-1.280	5407.604	3.827	-2.459
4284.188	3.854	-1.897	4876.399	3.854	-1.580	5420.922	3.758	-2.558
4554.988	4.071	-1.491	4884.607	3.858	-2.231	5478.365	4.178	-1.968
4558.650	4.073	-0.662	5232.496	4.071	-2.360	5502.067	4.168	-2.117
4565.739	4.042	-1.982	5237.329	4.073	-1.350	5503.212	4.143	-2.372
4588.199	4.071	-0.845	5246.768	3.714	-2.560	5508.606	4.156	-2.252
4592.049	4.074	-1.473	5274.964	4.071	-1.559	5510.702	3.827	-2.614
4616.629	4.072	-1.576	5279.876	4.073	-2.112			

Таблица 1. Список линий Cr II

Таблица 2. Список линий Ті II

Ti II λ (Å)	E _l (eV)	log gf	Ti II λ (Å)	E ₁ (eV)	log gf	Ti II λ (Å)	E _l (eV)	log gf
4025.129	0.607	-2.140	4470.853	1.165	-2.020	4865.611	1.116	-2.790
4053.821	1.893	-1.130	4488.325	3.124	-0.510	4874.010	3.095	-0.800
4056.185	0.607	-2.750	4493.513	1.080	-3.020	4911.193	3.124	-0.610
4287.872	1.080	-1.790	4501.270	1.116	-0.770	4996.367	1.582	-2.700
4301.914	1.161	-1.150	4518.327	1.080	-2.910	5005.157	1.566	-2.720
4386.844	2.598	-0.960	4529.474	1.572	-1.640	5129.152	1.892	-1.240
4394.051	1.221	-1.780	4533.960	1.237	-0.530	5185.902	1.893	-1.490
4395.839	1.243	-1.930	4544.016	1.243	-2.580	5226.538	1.566	-1.260
4409.516	1.231	-2.370	4563.757	1.221	-0.690	5252.019	2.590	-1.960
4411.072	3.095	-0.670	4568.314	1.224	-2.940	5336.771	1.582	-1.590
4411.925	1.224	-2.520	4583.409	1.165	-2.920	5381.015	1.566	-1.920
4417.714	1.165	-1.190	4609.264	1.180	-3.430	5418.751	1.582	-2.000
4418.330	1.237	-1.970	4636.320	1.165	-3.020	5422.463	1.572	-3.661
4421.938	2.061	-1.660	4719.515	1.243	-3.280	5454.090	1.566	-3.539
4432.109	1.237	-2.810	4763.881	1.221	-2.360	5490.690	1.566	-2.430
4441.729	1.180	-2.330	4779.985	2.048	-1.260	6491.561	2.061	-1.793
4443.794	1.080	-0.720	4794.814	1.131	-4.190	6605.897	4.009	-1.206
4444.555	1.116	-2.240	4798.521	1.080	-2.680	6606.949	2.061	-2.790
4450.482	1.084	-1.520	4805.085	2.061	-0.960	6680.133	3.095	-1.855
4464.449	1.161	-1.810	4806.321	1.084	-3.380	7564.486	4.009	-1.217
4468.507	1.131	-0.600	4849.169	1.131	-3.000	7575.423	4.002	-1.397

5 Результаты анализа

Результаты определения содержаний представлены в табл. 3. Первые пять столбцов таблицы содержат: НR номер звезды, спектральный класс SP, эффективную температуру $T_{\rm eff}$, ускорение силы тяжести на поверхности звезды log g и содержание железа log a(Fe), согласно Любимкову и др. (2010). В двух последних столбцах представлены содержания Cr и Ti, полученные в данной работе, а также ошибки их определения. В нижней строке таблицы указаны средние содержания и их ошибки.

Как видно из табл. 3, среднее содержание железа для исследуемых звезд, определенное в предыдущей нашей работе (Любимков и др., 2010) – log ε (Fe) = 7.50 ± 0.09, соответствует солнечному содержанию железа: log ε_{\odot} (Fe) = 7.50 ± 0.04. Средние содержания log ε (Cr) = 5.70±0.13 и log ε (Ti) = 4.89 ± 0.1 в пределах ошибки оказались близкими к солнечным значениям: log ε_{\odot} (Cr) = 5.64 ± 0.04, log ε_{\odot} (Ti) = 4.95 ± 0.05 (Асплунд и др., 2009).

Таблица 3. Фундаментальные параметры звезд: спектральный класс, T_{eff} , log g, log ε (Fe), найденные содержания log ε (Ti) и log ε (Cr) и ошибки измерений. В нижней строке таблицы показаны средние содержания с ошибками

HR	SP	T _{eff}	logg	log <i>e</i> (Fe)	log <i>ɛ</i> (Ti)	log <i>ɛ</i> (Cr)
157	G2.5 Iia	5130	2.15	7.41	4.85±0.11	5.60±0.06
292	F0II	6880	2.05	7.55	4.92±0.06	5.66±0.09
792	G5 II	5020	2.09	7.49	4.88±0.08	5.63±0.13
1017	F5 Ib	6350	1.90	7.43	4.92±0.05	5.67±0.06
1242	F0 II	6815	1.87	7.43	4.77±0.09	5.63±0.05
1270	G8 Iia	5060	1.91	7.59	4.83±0.22	5.64±0.20
1303	G0 Ib	5380	1.73	7.41	4.84±0.18	5.62±0.08
1740	A5 II	8300	2.10	7.42	5.03±0.09	5.95±0.06
1865	F0 Ib	6850	1.34	7.53	4.71±0.06	5.59±0.04
2693	F8 Ia	5850	1.00	7.51	4.92±0.10	5.75±0.04
3073	F1 Ia	6670	2.61	7.60	4.92±0.20	5.80±0.10
3102	F7II	5690	2.17	7.61	4.94±0.14	5.75±0.05
3183	A5 II	8530	2.67	7.54	5.07±0.07	5.89±0.09
3459	G1 Ib	5370	2.08	7.53	4.89±0.22	5.84±0.11
6081	A5 II	8370	2.12	7.53	5.04±0.07	5.93±0.07
6978	F7 Ib	6000	1.70	7.41	4.90±0.12	5.58±0.05
7164	G3 II	5200	2.25	7.40	4.81±0.24	5.57±0.17
7264	F2 II	6590	2.21	7.33	4.71±0.11	5.60±0.09
7542	F8 Ib-II	5750	2.15	7.67	5.00±0.18	5.75±0.07
7796	F8 Ib	5790	1.02	7.46	4.85±0.10	5.52±0.06
7834	F5 II	6570	2.32	7.50	4.77±0.10	5.61±0.05
8232	G0 Ib	5490	1.86	7.60	4.94±0.18	5.82±0.08
				7.50±0.09	4.89±0.1	5.70±0.13

На рис. 1 приведена зависимость содержания хрома и титана от температуры для 22 исследуемых звезд. Штриховые линии соответствуют средним содержаниям каждого элемента. Из рис. 1 видно, что более горячие сверхгиганты класса А показывают более высокие содержания Cr и Ti относительно средних значений: превышение составляет около 0.23 dex для хрома и около 0.15 dex для титана. Заметим, что температуры этих трех А-звезд существенно

превышают температуры остальных исследуемых звезд. Вероятным объяснением повышенных содержаний хрома и титана у более горячих А-звезд следует считать проявление не-ЛТР эффекта, который, как известно, становится более значимым с ростом температуры. Следует обратить внимание на то, что в пользу такого объяснения свидетельствует обособленное и компактное расположение группы из трех А-звезд – самых горячих звезд из нашего списка. Кроме того, отметим, что в результате проведенного анализа каких-либо других закономерностей, связанных с содержанием хрома и титана у этих звезд, выявлено не было. В частности, не обнаруживается зависимость содержаний Сг и Ті от расстояния d до звезды и от массы M/M_{\odot} .

Рис. 1. Зависимость содержания от температуры для Cr и Ti с ошибками определений. Штриховыми линиями показаны средние значения: 5.7 dex для хрома и 4.89 dex для титана

Остальные звезды с температурами $T_{\rm eff}$ 5020–6880 К, принадлежащие классам F и G, не показывают явных особенностей в распределении содержаний. Звезды, отличающиеся наибольшими погрешностями определения содержаний, как правило, обладают более низким значением эффективной температуры $T_{\rm eff}$. Для спектров таких звезд характерны искаженные

многочисленными блендами профили измеряемых линий, что приводит к менее надежным результатам, в том числе при определении микротурбулентной скорости. Однако следует обратить внимание на звезду HR 3073 с температурой $T_{\rm eff} = 6670$ K – одна из наиболее горячих звезд нашего списка, но выделяется менее уверенным определением содержания хрома и особенно титана. Из всего списка звезда HR 3073 имеет самую большую скорость вращения – около 35 км/с. Пример этой звезды хорошо иллюстрирует влияние скорости вращения $v\sin i$ на надежность результатов анализа химического состава у звезд такого типа.

Рис. 2. Распределение относительных содержаний [Сг/Н]

Рис. 3. Распределение относительных содержаний [Ti/H]

На рисунках 2 и 3 показаны гистограммы с распределением числа звезд N по найденным содержаниям относительно соответствующих солнечных содержаний. Разница в содержаниях, или относительное содержание между звездой и Солнцем в логарифмической шкале, равна $[X/H] = \lg \epsilon(X) - \lg \epsilon_{\infty}(X)$. В отличие от представленных выше средних содержаний хрома и

титана, на гистограммах наглядно продемонстрировано статистическое распределение результатов измерений. Хорошо заметно, что даже при относительно небольшом числе исследуемых звезд наблюдается резкий статистический максимум вблизи нулевого значения [X/H], т. е. вблизи значений солнечного содержания обоих элементов. На гистограмме каждого из элементов присутствует наиболее многочисленная группа из общего числа исследуемых звезд, которая имеет очень близкие значения содержаний к солнечному.

6 Выводы

Выполнен анализ содержания двух химических элементов группы железа – хрома и титана – для 22 А-, F-, G-сверхгигантов в солнечной окрестности радиусом 700 пс.

Для проведения анализа использовались фундаментальные параметры звезд log g и $T_{\rm eff}$, найденные с помощью метода звездных параллаксов (Любимков и др., 2010), что позволило повысить точность определения этих параметров и химического состава.

Найденные по эквивалентным ширинам линий ионов Cr II и Ti II содержания хрома и титана в пределах ошибок находятся в хорошем согласии с современными оценками содержания соответствующих элементов на Солнце: log $\varepsilon(Cr) = 5.70 \pm 0.13$ (при log $\varepsilon_{\odot}(Cr) = 5.64 \pm 0.04$); log $\varepsilon(Ti) = 4.89 \pm 0.1$ (при log $\varepsilon_{\odot}(Ti) = 4.95 \pm 0.05$). Иными словами, существенных отклонений от солнечных содержаний не выявлено.

Результаты данной работы хорошо согласуются с выводами предыдущих наших исследований. В частности, в работе Любимкова и др. (2010) для А-, F-, G-сверхгигантов получен аналогичный результат для содержания железа, а в работах Любимкова и др. (2005, 2013) исследовались близкорасположенные (до 600 пс) В-звезды, содержания Mg, N и О оказались идентичными солнечным.

Данное исследование А-, F-, G-сверхгигантов дает основание полагать, что в среднем металличность молодых звезд в окрестности Солнца очень близка к солнечной металличности.

Автор выражает благодарность Л.С. Любимкову и Т.М. Рачковской за ценные полезные замечания к статье.

Литература

- Андриевский и др. (Andrievsky S.M., Luck R.E., Martin P. and Lépine J.R.D.) // Astron. Astrophys. 2004. V. 413. P. 159.
- Асплунд и др. (Asplund M., Grevesse N., Sauval A.J., Scott P.) // Ann. Rev. Astron. Astrophys. 2009. V. 47. P. 481.

Боярчук А.А., Любимков Л.С., Сахибулин Н.А. // Астрофизика. 1985. Т. 22. С. 339.

Ван Лееувен (van Leeuwen F.) // Hipparcos, The New Reduction of the Raw Data Dordrecht: Springer. 2007.

Кларет (Claret A.) // Astron. Astrophys. 2004. V. 424. P. 919.

- Купка и др. (Kupka F., Piskunov N.E., Ryabchikova T.A., Stempels H.C., Weiss W.W.) // Astron. Astrophys. Suppl. Ser. 1999. V. 138. P. 119.
- Любимков и др. (Lyubimkov L.S., Rostopchin S.I., Rachkovskaya T.M., Poklad D.B., Lambert D.L.) // Mon. Not. Roy. Astron. Soc. 2005. V. 358. P. 193.

Любимков Л.С., Рачковская Т.М., Поклад Д.Б. // Астрофизика. 2009. Т. 52. С. 237.

- Любимков и др. (Lyubimkov L.S., Lambert D.L., Rostopchin S.I., Rachkovskaya T.M., Poklad D.B.) // Mon. Not. Roy. Astron. Soc. 2010. V. 402. P. 1369.
- Любимков и др. (Lyubimkov L.S., Lambert D.L., Korotin S.A., Poklad D.B., Rachkovskaya T.M. and Rostopchin S.I.) // Mon. Not. Roy. Astron. Soc. 2011. V. 410. P. 1774.

- Любимков и др. (Lyubimkov L.S., Lambert D.L., Kaminsky B.M., Pavlenko Y.V., Poklad D.B., Rachkovskaya T.M.) // Mon. Not. Roy. Astron. Soc. 2012. V. 427. P. 11.
- Любимков и др. (Lyubimkov L.S., Lambert D.L., Poklad D.B., Rachkovskaya T.M., Rostopchin S.I.) // Mon. Not. Roy. Astron. Soc. 2013. V. 428. P. 3497.
- Ниева, Пржибилла (Nieva M.F., Przybilla N.) // Astron. Astrophys. 2012. V. 539A. P. 143.
- Тулл и др. (Tull R.G., MacQueen P.J., Sneden C., Lambert D.L.) // Publ. Astron. Soc. Pacific. 1995. V. 107. P. 251.
- Хейтер и др. (Heiter U., Barklem P., Fossati L., Kildiyarova R., Kochukhov O., Kupka F., Obbrugger M., Piskunov N.) // J. Phys: Conf. Ser. 2008. V. 130. Issue 1. № 012011. P. 1.
- Цымбал (Tsymbal V.V.) // Model Atmospheres and Stellar Spectra/ Eds Adelman S.J., Kupka F., Weiss W.W. ASP Conf. Ser. 1996. V. 108. P. 198.