Изв. Крымской Астрофиз. Обс. 109, № 1, 109-114 (2013)

удк 523.64, 520.27 Наблюдения комет C/2009 R1 (МакНота) и 17Р/Холмса в линии ОН на длине волны 18 см

Л.Н. Вольвач¹, А.А. Бережной², А.Е. Вольвач¹

¹Лаборатория радиоастрономии НИИ «Крымская астрофизическая обсерватория», РТ-22, Кацивели, AP Крым, Украина, 98688 *volvach@ukrpost.ua* ² Государственный астрономический институт им. Штернберга, МГУ, Москва, Россия

Поступила в редакцию 11 января 2013 г.

Аннотация. Представлены результаты наблюдений комет C/2009 R1 (МакНота) 14–28 июня 2010 года и 17Р/Холмса 6–10 ноября и 25 ноября – 3 декабря 2007 года в линии молекулы гидроксила ОН на длине волны 18 см. Определена газопроизводительность молекул ОН в комете C/2009 R1 (МакНота) в зависимости от гелиоцентрического расстояния (0.42–0.62 а. е.).

OBSERVATIONS OF COMETS C/2009 R1 (MCNAUGHT) AND 17P/HOLMES IN OH LINE AT 18 CM, by L.N. Volvach, A.A. Berezhnoj, A.E. Volvach. The paper presents results of observations of comets C/2009 R1 (McNaught) on June 14–28, 2010 and 17P/Holmes on November 6–10 and November 25 – December 3, 2007 in the line of OH molecule at 18 cm. The OH gas production rate of comet C/2009 R1 (McNaught) versus the heliocentric distance between 0.42 and 0.62 AU is estimated.

Ключевые слова: кометы, мазеры, радиоизлучение

1 Введение

Состав кометных ядер представляет большой интерес для понимания происхождения комет. Из-за слабого гравитационного поля кометных ядер их атмосферы свободно расширяются в межпланетной среде. Скорость расширения атмосферы – параметр, который имеет решающее значение для интерпретации наблюдений комет и моделирования кометных явлений.

Новая эра в исследовании комет начиналась в 1973 году с наблюдений на длине волны 18 см линий ОН радикала, обнаруженного в комете Когоутека 1973 XII (Тернер, 1974). Радикал ОН в кометных атмосферах происходит от фотодиссоциации воды – основной составляющей кометных льдов. Прямое наблюдение с Земли H₂O в кометах сложно и обычно приходится использовать вторичные продукты, такие как OH, чтобы оценить газопроизводительность кометы и ее эволюцию.

Данные наблюдений комет в линии ОН в радиодиапазоне позволяют получить значения ряда физических параметров, характеризующих газовую и пылевую компоненты кометных атмосфер, а также проследить их временную и пространственную эволюцию, что актуально для Наблюдения комет C/2009 R1 (МакНота) и 17Р/Холмса...

определения времен жизни комет, их происхождения и определения масштабов уровня опасности при столкновениях кометных ядер с Землей.

Радионаблюдения линий ОН на длине волны 18 см значительно отличаются от спектральных наблюдений в ультрафиолетовом и инфракрасном диапазонах. Радиолинии полностью разрешены, а их доплеровские профили позволяют исследовать кинематические свойства кометных атмосфер. Диаграмма направленности радиотелескопа охватывает большую часть комы кометы, что требует минимальной экстраполяции (в отличие от оптических или УФ-спектроскопических наблюдений, когда видна только небольшая часть комы). Радионаблюдения на длине волны 18 см почти не чувствительны к погодным условиям.

Однако из-за особенностей механизма возбуждения радикала ОН, который зависит от гелиоцентрической радиальной скорости, наблюдения линий ОН на длине волны 18 см возможны в определенном диапазоне гелиоцентрических скоростей. Возбуждение посредством УФ-накачки и последующей флуоресценции приводит к инверсии (или антиинверсии) в основном состоянии Л-дублета радикала ОН. Наиболее заметное расхождение между двумя моделями инверсии (Деспоис и др., 1981; Шлейхер и др., 1988) наблюдается при таких гелиоцентрических скоростях, при которых происходит кроссовер от инверсии к антиинверсии заселенности основного состояния.

В период с 1973 по 1999 гг. с помощью радиотелескопа радиоастрономической обсерватории Нансэ (Франция) успешно выполнены наблюдения 52 комет (Кровисиер и др., 2002). В 2000 году радиотелескоп был модернизирован и с чувствительностью, возросшей примерно в два раза, проведены исследования более 40 комет (http://www.lesia.obspm.fr).

В 2005 году в лаборатории радиоастрономии НИИ «КрАО» разработана методика, и с помощью РТ-22 начаты наблюдения комет в линии ОН на волне 18 см. Результаты наблюдений комет 9Р/Темпеля 1 и Лулинь С/2007 N3 представлены в работе (Вольвач и др., 2011).

В данной работе представлены результаты исследования комет C/2009 R1 (МакНота) и 17Р/Холмса.

2 Наблюдения и обработка данных

С помощью РТ-22 КрАО для дециметрового и сантиметрового диапазонов длин волн разработана приемная аппаратура для наблюдений источников мазерного излучения на молекулах гидроксила. Для проведения наблюдений излучения основного состояния ${}^{2}\Pi_{1/2}$ молекулы ОН (на частотах 1.612 ГГц, 1.665 ГГц, 1.667 ГГц, 1.720 ГГц) использовался как криогенный, так и неохлаждаемый приемники, имеющие собственную шумовую температуру приемных систем $T_{\rm m} \approx 10$ К и $T_{\rm m} \approx 30$ К соответственно.

Для проведения регистрации спектров источников использовался Фурье спектр анализатор параллельного типа.

С имеющимися параметрами системы радиотелескоп-радиометр с помощью PT-22 можно уверенно зарегистрировать излучение кометы в линиях ОН, если блеск кометы превышает 6^m. В среднем на PT-22 можно наблюдать одну комету в линиях ОН в течение 1–2 лет.

2.1 Наблюдения кометы C/2009 R1 (МакНота)

Комета C/2009 R1 (МакНота) открыта Робертом МакНотом 9 сентября 2009 года как объект 17.3 звездной величины (Марсден, 2009). Наблюдения кометы C/2009 R1 (МакНота) с помощью РТ-22 КрАО на длине волны 18 см проведены с 14 июля вплоть до прохождения перигелия 2 июля 2010 года. Наблюдения 29 июня – 2 июля были неудачными из-за плохой погоды. На рис. 1 приведены спектры кометы, полученные с усреднением в течение нескольких

дней, чтобы улучшить отношение сигнал/шум. Время накопления сигнала в течение одного сеанса наблюдений составляло 1–2 часа.

Рис. 1. Усредненные спектры кометы C/2009 R1 (МакНота) по результатам наблюдений 14–24 июня (слева) и 25 июня – 2 июля 2010 г. (справа)

2.2 Наблюдения кометы 17Р/Холмса

Комета 17Р/Холмса открыта Эдвином Холмсом 6 ноября 1892 г. вскоре после мощной вспышки этой кометы. Наблюдения кометы проведены с помощью РТ-22 на длине волны 18 см спустя несколько дней после новой мощной вспышки блеска 24 октября 2007 года. На рис. 2 приведен спектр кометы, полученный с усреднением в течение нескольких дней для улучшения отношения сигнал/шум. Время накопления сигнала в течение одного сеанса наблюдений составляло 4–5 часов.

Рис. 2 Усредненные спектры кометы 17Р/Холмса 6–10 ноября (слева) и 25 ноября – 3 декабря 2007 г. (справа)

3 Анализ данных

Для определения площади линии (единицы измерения – Ян×км/с) полученные профили излучения комет в линиях ОН аппроксимировались параболой. Для оценки величины газопроизводительности комет (число радикалов ОН, доставляемых в кому кометы ежесекундно) применялось уравнение (4) из работы (Бокили-Морван и др., 1990):

$$f\Gamma = 2.33 \times 10^{34} \, \varDelta^2 \, S/i \, T_{bg}, \tag{1}$$

Наблюдения комет C/2009 R1 (МакНота) и 17Р/Холмса...

где Γ – общее количество радикалов ОН в коме, S – площадь 1667 МГц линии ОН в Ян км/с, f – доля наблюдаемых радикалов ОН, находящихся в равновесной флюоресценции, Δ – расстояние между кометой и Землей в астрономических единицах, i = -0.3 - 0.5 - инверсия основногосостояния Л-дублета (зависит от гелиоцентрической скорости кометы), T_{bg} = 3-5 К температура фона радиоизлучения. Температура фона радиоизлучения оценивалась на основании данных обзора яркостной температуры неба на длине волны 21 см (Рейч, 1982) в предположении, что спектральный индекс излучения галактического фона равен -2.6, а температура реликтового радиоизлучения равна 2.7 К. Инверсионный фактор оценивался на основании модели (Деспоис и др., 1981). Линия ОН аппроксимировалась трапецией. А-дублет радикала ОН действует как слабый мазер усиления (или ослабления) в соответствии с его инверсией (или антиинверсией) фона континуума на длине волны 18 см. Большую часть времени температурный фон Т_{bg} близок к 3 К, но может быть значительно выше, когда комета пересекает галактическую плоскость или в диаграмму направленности попадает случайный дискретный источник радиоизлучения. Фактор закалки f оценен в рамках модели (Шлоерб и др., 1986), причем радиус закалки r_a рассчитывался как 83 500×(Q(OH)/10²⁹)^{0.5} км, отношение содержаний ионов и электронов в коме кометы принято равным 1%, а расстояние кометы от Солнца – 1 астрономическая единица в соответствии с приближениями, используемыми при расчетах (Шлоерб, 1988).

Газопроизводительность кометы определяется выражением:

$$Q(OH) = \Gamma(OH) / \tau(OH), \qquad (2)$$

где время жизни OH, τ (OH) = τ (OH, 1 a. e.)×r², где τ (OH, 1 a. e.) = 1.1×10^5 с – время жизни OH на расстоянии в 1 астрономическую единицу от Солнца (Хуебнер и др., 1992), г – расстояние между кометой и Солнцем в астрономических единицах.

В табл. 1 приведены величины газопроизводительности комет Холмса и Темпеля в линии гидроксила ОН.

Комета	Дата	r, AU	T _{bg} ,	S,	dr,	i [2]	i [3]	f [3]	Q(OH),	Q(OH),
	наблюдений		K	Ян км с ⁻¹	km/s				молекул/с	молекул/с
									[1]	[2]
17Р/Холмса	6-10.11.2007	2.49	3.8	0.052	6.84	-0.04	0.001	1*	-7×10^{28}	2.7×10^{30}
17Р/Холмса	25.11-	2.58	3.6	0.146	7.1	-0.07	-0.004	1*	-10^{29}	-2×10^{30}
	03.12.2007									
C/2009 R1	14-15.06.2010	0.615	3.7	-0.21	-31.4	-0.15	-0.17	0.71	8.4×10^{29}	7.4×10^{29}
(МакНота)										
C/2009 R1	17-18.06.2010	0.57	3.6	-0.23	-29.6	-0.05	-0.11	0.56	5.4×10^{30}	2.0×10^{30}
(МакНота)										
C/2009 R1	20-21.06.2010	0.52	3.8		-26.9	0.13	0.12			
(МакНота)										
C/2009 R1	22-23.06.2010	0.48	3.5	0.91	-24.2	0.39	0.34	0.45	4.1×10^{30}	4.7×10^{30}
(МакНота)										
C/2009 R1	24-26.06.2010	0.45	3.4	1.00	-19.7	0.46	0.46	0.45	4.6×10^{30}	4.6×10^{30}
(МакНота)										
C/2009 R1	27-28.06.2010	0.425	3.4	0.96	-14	0.26	0.23	0.38	1.1×10^{31}	1.3×10^{31}
(МакНота)										

Таблица 1. Результаты наблюдений комет С/2009 R1 (МакНота) 1 и 17Р/Холмса

* – из-за неопределенности в определении Q(OH) для кометы 17Р\Холмса принято, что f = 1. [1] – по модели (Деспоис и др., 1981), [2] – по модели (Шлейхер и др., 1988)

Период наблюдений кометы 17Р/Холмса и частично кометы C/2009 R1 (МакНота) совпал с моментом кроссовера от инверсии к антиинверсии заселенности основного состояния Адублета радикала ОН. Из-за неопределенности (близкого к нулю) в этот период времени значения инверсионного фактора *i* в формуле (1) затруднена оценка газопроизводительности молекул ОН для кометы 17Р/Холмса по данным наших наблюдений. Скорее всего, обе модели (Деспоис и др., 1981; Шлейхер и др., 1988) в диапазоне гелиоцентрических скоростей 6.8– 7.1 км/с выдают неверные оценки инверсионного фактора, так как газопроизводительность кометы Холмса является отрицательной величиной. По этой же причине из табл. 1 исключены результаты наблюдений кометы C/2009 R1 (МакНота), проведенные 16 и 19–21 июня 2010 г.

Радионаблюдения кометы Холмса в диапазоне от дециметровых до субмиллиметровых длин волн были проведены вскоре после мощной вспышки кометы, произошедшей 24.2 октября 2007 г., и в радиоастрономической обсерватории Нансэ (Кровисиер и др., 2009). Из данных этих радионаблюдений газопроизводительность кометы также не была надежно оценена по причине близкого к нулю инверсионного фактора. По результатам инфракрасной спектроскопии высокого разрешения газопроизводительность молекул H₂O для кометы была равна 4.5×10^{29} , 1.8×10^{29} , 6.6×10^{28} молекул/с в октябре 27.6, 31.3 и ноябре 2.3, 2007 соответственно (Делло Руссо и др., 2008). Этим наблюдениям не противоречат результаты исследований кометы Холмса с помощью узкополосной фотометрии, согласно которым газопроизводительность была равна 5.2×10^{29} , 1.2×10^{29} , 6.5×10^{28} , 2.9×10^{28} , 2.8×10^{28} молекул/с в ноябре 1.2, 11.2, 20.2 и декабре 3.3, 4.3, 2007 соответственно (Шлейхер, 2009).

Согласно нашим наблюдениям газопроизводительность кометы C/2009 R1 (МакНота) быстро возрастала по мере приближения к перигелию (рис. 3).

Рис. 3 Зависимость газопроизводительности кометы C/2009 R1 (МакНота) от гелиоцентрического расстояния

Комета C/2009 R1 (МакНота) также наблюдалась в период 25, 29, 31 мая, и 1, 10, 14 и 22 июня 2010 года с помощью миллиметровых и инфракрасных телескопов. Обнаружено излучение HCN, H₂CO, CH₃OH, CO, CH₄, C₂H₆, H2O, CS, OH (Милам и др., 2010), химический состав кометы оказался близок к среднему. Спектральные оптические наблюдения кометы C/2009 R1 (МакНота) позволили обнаружить излучение C₂, CN, CH, NH₂, CO⁺, CH⁺ и определить отношение газопроизводительностей $Q(C_2)/Q(CN)$, Q(CH)/Q(CN), Q(NH2)/Q(CN) (Корсун и др., 2012).

Наблюдения комет C/2009 R1 (МакНота) и 17Р/Холмса...

4 Выводы

С помощью РТ-22 начаты работы по исследованию комет в линии ОН на длине волны 18 см. Проведены наблюдения комет С/2009 R1 (МакНота) и 17Р/Холмса. Для кометы С/2009 R1 (МакНота) определена газопроизводительность молекул гидроксила ОН в зависимости от гелиоцентрического расстояния – газопроизводительность кометы быстро возрастала по мере приближения к перигелию.

Работа поддержана российско-украинским грантом РФФИ НАНУ 63-02-12.

Литература

- Бокили-Морван и др. (Bockelee-Morvan D., Crovisier J., Gerard E.) // Astron. Astrophys. 1990. V. 238. P. 382.
- Вольвач А.Е., Бережной А.А., Вольвач Л.Н. и др. // Изв. Крымск. Астрофиз. Обсерв. 2011. Т. 107. № 1. С. 178.
- Делло Руссо и др. (Dello Russo N., Vervack R.J., Weaver H. A., et al.) // Astrophys. J. 2008. V. 680. P. 793.
- Деспоис и др. (Despois D., Gerard E., Crovisier I., et al.) // Astron. Astrophys. 1981. V. 99. P. 320.
- Корсун и др. (Korsun P., Kulyk I., Velichko S.) // Planetary Space Sci. 2012. V. 60. Issue 1. P. 255.
- Кровисиер и др. (Crovisier J., Biver N., Bockelee-Morvan D., et al.) // Planetary Space Sci. 2009. V. 57. Issue 10. P. 1162.
- Кровисиер и др. (Crovisier J., Colom P., Gerard E., et al.) // Astron. Astrophys. 2002. V. 393. P. 1053.
- Марсден (Marsden B.G.) // Minor Planet Electronic Circ. 2009. R33.
- Милам и др. (Milam S.N., DiSanti M.A., Bonev B.P., Charnley S.B.) // Bull. Am. Astron. Soc. 2010. V. 42. P. 963.
- Рейч (Reich W.) // Astron. Astrophys. Suppl. Ser. 1982. V. 48. P. 219.
- Тернер (Turner B.E.) // Astrophys. J. 1974. V. 189. Р. 137.
- Шлейхер (Schleicher D.G.) // Astrophys. J. 2009. V. 138. P. 1062.
- Шлейхер и др. (Schleicher D.G., A'Hearn M.F.) // Astrophys. J. 1988. V. 331. P. 1058.
- Шлоерб и др. (Schloerb F.P., Claussen M.J., Tacconi-Garman L.) // ESA Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet. 1986. V. 1. P. 583.
- Шлоерб (Schloerb F.P.) // Astrophys. J. 1988. V. 332. P. 524.
- Хуебнер и др. (Huebner W.F., Keady J.J., Lyon S.P.) // Astrophys. Space Sci. 1992. V. 195. № 1. P. 291.