ИЗВЕСТИЯ КРЫМСКОЙ АСТРОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ

Изв. Крымской Астрофиз. Обс. 109, № 2, 13-15 (2013)

УДК 524.31

Исходное содержание азота и кислорода в молодых **В**-звездах в окрестности Солнца

 $\Pi.C.$ Любимков l , Д.Л. Ламберт 2 , Д.Б. Поклад l , Т.М. Рачковская l , С.И. Ростопчин 2

Поступила в редакцию 17 декабря 2012 г.

Аннотация. Выполнен не-ЛТР анализ линий N II и O II для 22 специально отобранных ранних и средних В-звезд с расстояниями $d \le 600$ пс от Солнца, которые, по-видимому, сохранили исходное содержание N и O в своих атмосферах. Для них в среднем получено $\log \mathfrak{L}(N) = 7.80 \pm 0.12$ и $\log \mathfrak{L}(O) = 8.73 \pm 0.13$, что очень хорошо согласуется с последними оценками содержаний N и O для Солнца.

INITIAL NITROGEN AND OXYGEN ABUNDANCES IN YOUNG B-TYPE STARS IN THE SOLAR NEIGHBOURHOOD, by L.S. Lyubimkov, D.L. Lambert, D.B. Poklad, T.M. Rachkovskaya, S.I. Rostopchin. Non-LTE analysis of N II and O II lines is implemented for 22 specially selected early and middle B-type stars with distances $d \le 600$ pc from the Sun, which are likely to keep the initial N and O abundances in their atmospheres. The mean values $\log \epsilon(N) = 7.80 \pm 0.12$ and $\log \epsilon(O) = 8.73 \pm 0.13$ are found, that are in very good agreement with recent evaluations of the N and O abundances for the Sun.

Ключевые слова: В-звезды, химический состав

В работах последнего десятилетия было показано, что содержание ряда химических элементов (Fe, Mg и др.) в молодых звездах в окрестности Солнца, в частности в близких В-звездах главной последовательности (ГП), в среднем равно солнечному содержанию. То есть их металличность соответствовала солнечной. И лишь содержания С, N и О у таких звезд, согласно некоторым работам, выпадали из общей картины — они были немного понижены (на 0.2—0.3 dex) по сравнению с Солнцем. Такое различие допускало два объяснения: либо имеется реальный небольшой дефицит углерода, азота и кислорода в атмосферах таких звезд, связанный, например, со звездной эволюцией; либо найденные содержания С, N и О в этих работах систематически занижены.

Чтобы способствовать решению этой проблемы, мы выполнили анализ содержаний N и O для достаточно представительной группы B-звезд $\Gamma\Pi$, эволюционный статус которых показывал, что в их атмосферах сохранилось исходное содержание N и O.

Ранее нами были проведены спектральные наблюдения 123 ранних и средних В-звезд на двух обсерваториях – КрАО (телескоп 2.6 м, разрешение 30000) и обсерватория Мак Дональд Техасского университета (телескоп 2.7 м, разрешение 60000). Они легли в основу ряда наших

¹ НИИ «Крымская астрофизическая обсерватория», Научный, АР Крым, Украина, 98409

² Обсерватория Мак Дональд, США

статей, опубликованных в MNRAS и других изданиях. В частности, для этих звезд были определены два фундаментальных параметра — эффективная температура $T_{\it eff}$ и ускорение силы тяжести в атмосфере звезды $\log g$ (Любимков и др., 2002). Как известно, содержания N и О для ранних и средних В-звезд находятся по линиям N II и О II, которые весьма чувствительны к принятым величинам $T_{\it eff}$ и $\log g$. Теперь мы переопределили $T_{\it eff}$ и $\log g$ для меньшего числа специально отобранных В-звезд, используя более совершенную методику.

Отбор звезд проводился по следующим параметрам.

1) Скорость вращения.

Резкие линии N II и O II хорошо видны и надежно измеряются только в спектрах В-звезд с достаточно малыми скоростями вращения $v\sin i$. Кроме того, для звезд с достаточно медленным вращением теория не предсказывает заметных изменений в атмосферном содержании N и O к концу стадии $\Gamma\Pi$ (нет заметного перемешивания на $\Gamma\Pi$ вследствие вращения). Поэтому мы ограничились рассмотрением звезд с $v\sin i < 70$ км/с.

2) <u>Эффективная температура Т_{eff}.</u>

Существует систематическое различие в шкалах $T_{\it eff}$ разных авторов для В-звезд, которое особенно заметно для ранних В-звезд, имеющих температуры $T_{\it eff}$ > 25000 К. Мы отобрали звезды с $T_{\it eff}$ = 15300—24100 К.

3) <u>Ускорение силы тяжести log g</u>.

Чтобы исключить возможное эволюционное изменение атмосферных содержаний N и O в течение стадии $\Gamma\Pi$, мы не рассматривали звезды, близкие к концу фазы $\Gamma\Pi$ (согласно эволюционным трекам). Поэтому для подавляющего большинства отобранных звезд $\log g > 3.75$.

4) Наблюдаемые параметры для определения $T_{eff}u \log g$.

Для определения ускорения силы тяжести $\log g$ мы использовали звездные параллаксы π (новая редукция данных спутника Hipparcos). Отобраны звезды с $\pi \ge 1.67$ mas, что соответствует расстояниям $d \le 600$ пс. Эффективная температура T_{eff} определялась с помощью двух фотометрических индексов: индекс Q в системе UBV и индекс $[c_I]$ в системе uvby; как известно, они оба свободны от влияния межзвездного поглощения.

В итоге были отобраны 22 непроэволюционировавшие В-звезды с массами $M=5{\text -}11{\rm M}_{*}$ (массы найдены по эволюционным трекам) в окрестности Солнца радиусом 600 пс. Таким образом, наша цель состояла в определении исходных содержаний азота и кислорода в молодых В-звездах в достаточно близкой окрестности Солнца.

Как предшествующие исследования, так и наши расчеты линий N II и О II показали, что в случае В-звезд с эффективными температурами $T_{eff} > 18000$ К в таких расчетах следует отказаться от предположения о локальном термодинамическом равновесии (ЛТР). Все не-ЛТР расчеты линий N II и О II для отобранных звезд были выполнены нами с помощью программы MULTI C.A. Коротина.

Выполнив не-ЛТР анализ линий N II и O II, мы нашли содержания N и O для 22 программных звезд. В среднем получено $\log \, \epsilon(N) = 7.80 \pm 0.12$ и $\log \, \epsilon(O) = 8.73 \pm 0.13$, что очень хорошо согласуется с последними данными других авторов, полученными для В-звезд в 2009–2012 гг. Важно, что имеется также отличное согласие с современными оценками содержаний N и O на Солнце. Такое согласие видно из табл. 1, где представлено сравнение с солнечными содержаниями N и O из следующих источников: Каффо и др. (2008, 2009); Асплунд и др. (2009). Таким образом, наш анализ содержаний азота и кислорода подтверждает вывод, полученный по другим химическим элементам, а именно: металличность близких молодых В-звезд такая же, как у Солнца.

Таблица 1. Средние содержания азота и кислорода для 22 В-звезд в сравнении с содержаниями N и O на Солнце

Объект	log ε (N)	$\log \varepsilon(O)$	Источник
В-звезды	7.80 ± 0.12	8.73 ± 0.13	Настоящая работа
Солнечная			
фотосфера	7.86 ± 0.12	8.76 ± 0.07	Каффо и др. (2008, 2009)
Солнечная			
фотосфера	7.83 ± 0.05	8.69 ± 0.05	Асплунд и др. (2009)
Протосолнечное			
содержание	7.87 ± 0.05	8.73 ± 0.05	Асплунд и др. (2009)

Следует отметить, что мы определили также содержание углерода для 22 программных звезд (не-ЛТР анализ линий С II) и нашли в среднем $\log \varepsilon(C) = 8.31\pm0.13$. С одной стороны, эта величина очень близка к современным оценкам $\log \varepsilon(C)$ других авторов для В-звезд. Однако, с другой стороны, все эти оценки, как и прежде, показывают небольшой, но устойчивый дефицит (до 0.2 dex) относительно Солнца. Причина такого дефицита до конца пока не выяснена.

Расширенная версия данной работы принята к печати в Monthly Notices of the Royal Astronomical Society.

Литература

Асплунд и др. (Asplund M. et al.) // Ann. Rev. Astron. Astrophys. 2009. V. 47. P. 481. Каффо и др. (Caffau E. et al.) // Astron. Astrophys. 2008. V. 488. P. 1031. Каффо и др. (Caffau E. et al.) // Astron. Astrophys. 2009. V. 498. P. 877. Любимков и др. (Lyubimkov L.S. et al.) // Mon. Not. Roy. Astron. Soc. 2002. V. 9. P. 333.