ИЗВЕСТИЯ КРЫМСКОЙ АСТРОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ

Изв. Крымской Астрофиз. Обс. 109, № 2, 67-69 (2013)

УДК 524.4

Генерирование устойчивого волнового потока на фотосферном уровне в эпоху минимума цикла солнечной активности

В.Г. Еселевич, М.В. Еселевич, В.А. Романов, Д.В. Романов, К.В. Романов, Н.В. Кучеров

Учреждение российской академии наук Институт солнечно-земной физики Сибирского отделения РАН, 664033, г. Иркутск, Россия

В работе исследуется нелинейная фаза развития неустойчивости Паркера (Паркер, 1979; Романов, Романов, 2008) колебаний тонкой магнитной трубки в конвективной зоне Солнца. В приближении недиссипативной магнитной газодинамики уравнение движения содержит только две силы (Романов, Романов, 2008):

$$\rho_{i} \frac{d\vec{v}}{dt} = \frac{H \cdot \sigma \cdot \rho_{i}}{4\pi} \cdot \frac{\partial}{\partial s} \left(H \cdot \vec{\ell} \right) + \left(\rho_{i} - \rho_{ext} \right) \cdot \vec{g}(\vec{r}), \quad -$$

силу натяжения магнитных силовых линий и силу Архимеда. Приведены результаты расчета развития неустойчивости Паркера в экваториальной плоскости Солнца с начальными параметрами: m=4; $H_0=2\cdot 10^6$ Гс. Глубина потери устойчивости h=-188000 км от фотосферного уровня. Формирование устойчивого колебательного процесса проходит в две фазы:

- 1. Полное развертывание магнитной структуры до стадии полного торможения.
- 2. Опускание верхней части арочной структуры до стадии полного торможения.
- 3. Устойчивые квазигармонические колебания вблизи фотосферного уровня (рис. 1).

Для колебаний верхней части арочной структуры магнитного поля стандартным образом вводится потенциальная энергия: $dU = -\vec{F} \cdot d\vec{r}$. На рис. 2 представлено распределение удельной потенциальной энергии от глубины. Вблизи фотосферного уровня формируется потенциальная яма, в которой трубка совершает квазигармонические колебания.

Квазигармонические колебания всплывающих магнитных полей вблизи фотосферного уровня Солнца генерируют слабые ударные волны, проникающие через фотосферный уровень в солнечную атмосферу (Алексеенко и др., 2012; Алексеенко и др., 1998). Наиболее важными физическими параметрами колебаний, определяющими генерацию ударных волн, являются:

- 1. Глубина срыва (развития неустойчивости Паркера) магнитного поля.
- 2. Глубина достижения максимальной скорости подъема магнитных полей.
- 3. Глубина торможения магнитных полей.
- 4. Величина максимальной скорости подъема магнитного поля.
- 5. Величина максимальной скорости подъема в числах Маха.

На рис. 3 показано, что в спектральном диапазоне $1 \le m \le 4$ максимальная скорость подъема практически не зависит от волнового числа m. Генерируются дозвуковые волны сжатия,

Генерирование устойчивого волнового потока...

которые при распространении в стратифицированной атмосфере переходят в слабые ударные волны, разогревающие нижние слои солнечной хромосферы (Прист, 1985).

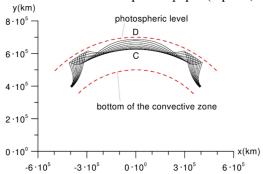


Рис. 1. Устойчивые квазигармонические колебания вблизи фотосферного уровня

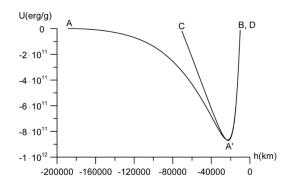
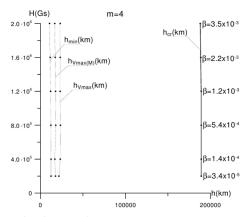



Рис. 2. Распределение удельной потенциальной энергии от глубины

Рис. 3. Глубина торможения (h_{\min}) , глубина максимальной скорости подъема $(h_{V_{\max}})$, глубина максимальной скорости подъема в числах Маха $(h_{V_{\max}(M)})$, глубина потери устойчивости трубки (h_{cr}) в зависимости от напряженности магнитного поля $(H_{cr}(Gs))$ при m=4

Литература

Алексеенко и др. (Alekseenko S.V., Dudnikova G.I., Kucherov N.V., Romanov V.A., Romanov D.V., Romanov K.V., Semenov I.V.) // ICMAR-2012. Novosibirsk. 2012.

Алексеенко и др. (Alekseenko S.V., Dudnikova G.I., Romanov V.A., Romanov D.V., Romanov K.V.) // Rus. J. Eng. Thermophys. 1998. V. 8. P. 95.

Паркер (Parker E.N.) // Astrophys. Space Sci. 1979. V. 62. P. 135.

Прист Э.Р. // Солнечная магнитогидродинамика. М.: Мир. 1985.

Романов Д.В., Романов К.В. // Вычислительные технологии. Новосибирск: ИВТ СО РАН. 2008. Т. 13. № 3. С. 91.