Изв. Крымской Астрофиз. Обс. 109, № 3, 195–198 (2013)

удк 523.9; 524.8 Вращение Земли: почему 24?

В.А. Котов

НИИ "Крымская астрофизическая обсерватория" КНУ им. Т. Шевченко, Научный, АР Крым, Украина, 98409 vkotov@crao.crimea.ua

Поступила в редакцию 18 октября 2013 г.

Аннотация. Мы показываем, что наилучший соизмеримый период осевого вращения 13 самых крупных быстрых ротаторов Солнечной системы равен 9800(240) с. В пределах ошибки он совпадает с космологическим периодом $t_{cc} \approx 9600.6$ с, находящемся, в свою очередь, в тесном резонансе 1:9 с вращением Земли. Феномен объясняется с точки зрения "кристаллов времени" Вильчека, синхронизованных ритмом t_{cc} "универсальных часов", и при условии "квази-квантового" состояния центральных ядер планет и больших астероидов.

THE EARTH'S ROTATION: WHY 24?, by V.A. Kotov. We show that the best commensurate period of the spinning rate of 13 largest fast-rotators of the Solar system is equal to 9800(240) s. It coincides, within the error limits, with the cosmological period $t_{cc} \approx 9600.6$ s, which, in turn, occurs to be in close 1:9 resonance with the Earth rotation. The phenomenon is explained from the point of view of the Wilczek's "crystals of time", synchronized by the t_{cc} rhythm of the "universal clock", and under condition of "quasi-quantum" state of central cores of planets and large asteroids.

Ключевые слова: Солнце, Солнечная система, планеты, осевое вращение, время, космология

Разве случайно, что Земля вращается с периодом 24 ч? Астрономы принимают, что наша планета приняла скорость вращения в далеком прошлом благодаря многим сложным процессам и, главное, с участием приливных сил со стороны Солнца и Луны. Но мы показали (Котов, 2009), что это не совсем так: вращение Земли синхронизовано, с удивительной точностью 0.006 %, с некоторым периодическим космическим процессом. Последний представляет, по-видимому, ритм *абсолютного* времени Вселенной, который вытекает из фундаментальных законов Природы, атомных и космологических констант (Саншез и др., 2011). Заметим, что истинная природа *времени* еще неизвестна: это – поразительная загадка для ученых и философов. Приведем известный афоризм Эйнштейна: время это то, что измеряется часами.

Действительно, уникальным периодом, управляющим скоростями вращения быстровращающихся тел Солнечной системы (СС), представляется период когерентного космического колебания $t_{cc} = 9600.606(12)$ с, впервые обнаруженный у Солнца и впоследствии – в переменности некоторых АЯГ (Брукс и др., 1976; Северный и др., 1976; Грек и др., 1980; Шеррер и Уилкокс, 1983; Котов и Лютый, 2010; Котов и Ханейчук, 2011).

Данные об объектах СС, имеющих сидерические периоды осевого вращения P < 48 и известные диаметры D, взяты из каталогов и публикаций. Затем для различных выборок объектов мы вычислили резонанс-спектр $F(\nu)$, максимум которого, по определению, соответствует наиболее соизмеримой, или резонансной, частоте для данной выборки частот вращения (ν – пробная частота).

Название	Р (ч)	D (км)	P/t_{cc}	a (a.e.)
Земля	23.934	12756	8.975	1.000
Mapc	24.623	6790	9.233	1.524
Юпитер	10.680	142600	4.005	5.203
Сатурн	10.657	120200	3.996	9.539
Уран	10.817	49000	4.056	19.182
Нептун	16.110	50200	6.041	30.058
1 Церера	9.074	967	3.403	2.765
2 Паллада	7.813	524	2.930	2.772
4 Веста	5.342	536	2.003	2.362
10 Гигия	27.623	448	10.358	3.139
52 Европа	5.632	327	2.112	3.101
511 Давида	5.129	309	1.923	3.165
704 Интерамния	8.727	326	3.272	3.062

Таблица 1. Крупнейшие быстровращающиеся объекты СС

Параметры 13 самых крупных и быстрых ротаторов – 6 планет и 7 астероидов с $D \ge 300$ км – даны в табл. 1, где a – большая полуось орбиты. Их спектр $F(\nu)$ показан на рис. 1, где основной пик отвечает периоду 9800(240) с со значимостью 4 σ . Этот "планетарный" период согласуется в пределах ошибки с "мистическим" периодом t_{cc} глобальных пульсаций Солнца и наблюдаемой Вселенной. Другими словами, крупнейшие тела стремятся вращаться с периодами

$$P \approx Z t_{cc},$$
 (1)

где Z – положительное целое число, не превышающее 10. Отношения P/t_{cc} приведены в предпоследнем столбце табл. 1 (отметим, что все перечисленные тела расположены ближе к Солнцу, чем транснептунные объекты).

Такой же спектр, вычисленный для 812 меньших астероидов, не отличается от шума, см. рис. 2.

Мы думаем, что t_{cc} -резонанс на рис. 1 связан с большими массами и размерами тел, с особенностью их внутреннего устройства, а также с неким "универсальным" периодическим процессом неизвестной природы. Это предположение стимулировано понятием квази-квантовой природы центральных ядер крупных тел: число частиц: фотонов, протонов, электронов и атомов, при высоких температуре и давлении, – так велико, что перепутанность, или нелокальность, частиц может быть существенной (для случая Солнца и звезд см. Котов, 2010). Заметим, что, согласно современной геофизике, земное ядро представляет собой "железный кристалл" диаметром 2500 км при температуре $T \approx 4000$ K, сравнимой с эффективной температурой некоторых звезд. Меньшие тела, естественно, имеют низкие T и давление, с практическим отсутствием эффекта нелокальности элементарных составляющих: квантовый механизм не действует, и t_{cc} -резонанс, в среднем, отсутствует или пренебрежимо мал.

Вращение же крупных тел, в противоположность малым, хорошо синхронизовано периодом t_{cc} , особенно в случае Земли. Потому что ее сидерический период составляет 8.97486(1) "солнечных пульсаций"; для синодического же вращения резонанс еще более выпуклый: отношение периодов 8.99943(1).

Какой механизм мог установить такой замечательный резонанс? Простейшая гипотеза такова: он обусловлен самим *временем*, ритм которого отсчитывается космическим периодом t_{cc} , свободным от эффекта Доплера. Убедительные аргументы в пользу гипотезы следуют из симметрии трех фундаментальных взаимодействий, представленной Саншезом и др. (2011) и приводящей к космической шкале времени, в секундах,

$$t'_{cc} \equiv \tau_e (a_G a_w)^{1/2} = 9601.5(5).$$
⁽²⁾

Рис. 1. Спектр $F(\nu)$ осевого вращения 13 крупнейших тел СС. Пунктирная линия показывает уровень 3σ , пробная частота ν – в мкГц. Главный пик отвечает периоду 9800(240) с

Рис. 2. То же, что на рис. 1, для 812 астероидов с диаметрами $< 300\,$ км и периодами $< 48\,$ ч

Здесь $\tau_e \equiv \lambda_e/c$ – электронное время (с приведенной комптоновской длиной волны $\lambda_e \equiv \hbar/m_e c$), $a_G \approx 1.692 \times 10^{38}$ и $a_w \approx 3.283 \times 10^{11}$ – безразмерные "постоянные тонкой структуры" гравитационного и слабого взаимодействий, соответственно; обозначения общепринятые.

Шаг, – или ритм, бег, – времени можно вообразить, в свою очередь, в виде периодических (с периодом $t_{cc} \approx t'_{cc}$) колебаний *вероятности* Мироздания: мы живем во Вселенной, управляемой законами квантовой механики. Недавно Саншез и др. (2011) привели сильные аргументы в пользу неизменности радиуса R, в см, наблюдаемой Вселенной:

$$R \equiv \frac{2\hbar^2}{Gm_H^2 m_e} = 1.30632(16) \times 10^{28},\tag{3}$$

который согласуется с измеренной длиной Хаббла $R_H = c/H_0 = 1.28(5) \times 10^{28}$ см (здесь m_H – масса атома водорода и $H_0 = 72(2)$ км с⁻¹ Мпс⁻¹ – постоянная Хаббла). Но наиболее поразительно открытие Саншеза и др., что т.н. "возраст" Вселенной $T_H = R_H/c \approx 13.7$ млрд. лет также фундаментально связан с "повсеместным" t_{cc} -колебанием:

$$T_U \equiv a_e a_w t_{cc} \approx 1.37 \times 10^{10},\tag{4}$$

где T_U дается в годах, а $a_e \equiv \alpha^{-1} \approx 137.036$ – т.н. "электрическая постоянная" (величина, обратная электромагнитной постоянной тонкой структуры α).

Недавно Вильчек (2012; цит www.nanostore.com.ua/kristally-vremeni) обратил внимание на возможность интригующего явления в физике частиц, торжественно названного им "кристаллами времени": "физические структуры, которые движутся повторяющимся образом, подобно круговому обращению минутных стрелок, без затрат энергии и остановки. Но в отличие от часов или обычных объектов, кристаллы времени поддерживают свое движение не за счет запасенной энергии, а в результате нарушения симметрии времени, представляющей особую форму вечного движения." И он постулирует возможность "нарушений симметрии не только в пространстве, но и во времени для таких 'кристаллов времени'."

Процесс синхронизации вращения Земли – с периодом $\approx 9t_{cc}$ – представляется тесно связанным с существованием таких "кристаллов времени" во Вселенной. Мы делаем вывод, что осевое вращение нашей планеты может быть специальным свойством СС и вообще нашего Мира, обусловленным также принципом Маха и *тахионным принципом* Саншеза и др. (2011).

Спасибо И.А. Егановой и Ф.М. Саншезу за многие интересные дискуссии об устройстве Вселенной, физике пространства и времени, а также голографического и тахионного принципов.

Литература

Брукс и др. (Brookes J.R., Isaak G.R., van der Raay H.B.) // Nature. 1976. V. 259. P. 92.

Вильчек (Wilczek F.) // http://arXiv:1202.2539v2. 2012.

Грек и др. (Grec G., Fossat E., Pomerantz M.) // Nature. 1980. V. 288. P. 541.

Котов В.А. // Изв. Крымск. Астрофиз. Обсерв. 2009. Т. 105(1). С. 173.

Котов В.А. // Изв. Крымск. Астрофиз. Обсерв. 2010. Т. 106(1). С. 202.

Котов В.А., Лютый В.М. // Изв. Крымск. Астрофиз. Обсерв. 2010. Т. 106(1). С. 187.

Котов В.А., Ханейчук В.И. // Изв. Крымск. Астрофиз. Обсерв. 2011. Т. 107(1). С. 99.

Саншез и др. (Sanchez F.M., Kotov V.A., Bizouard C. // J. Cosmology. 2011. V. 17. P. 7225.

Северный и др. (Severny A.B., Kotov V.A., Tsap T.T.) // Nature. 1976. V. 259. P. 87.

Шеррер, Уилкокс (Scherrer P.H., Wilcox J.M.) // Solar Phys. 1983. V. 82. P. 37.