
Èçâ.Êðûìñêîé Àñòðî�èç.Îáñ. 100, 74�85 (2004) ÈÇÂÅÑÒÈßÊ�ÛÌÑÊÎÉÀÑÒ�ÎÔÈÇÈ×ÅÑÊÎÉÎÁÑÅ�ÂÀÒÎ�ÈÈÓÄÊ 523.9Numerial 3D simulation of aousti wave sattering by thesunspotK.V. ParhevskyCrimean Astrophysial Observatory, Nauhny, Crimea 98409, UkraineÏîñòóïèëà â ðåäàêöèþ 24 èþëÿ 2003 ã.Àííîòàöèÿ. Ïîñòðîåíà ÷èñëåííàÿ ìîäåëü �ñîëíöåòðÿñåíèÿ�, íàáëþäàâøåãîñÿ ñïóòíèêîì SOHO 6èþëÿ 1996 ã. Â ðåçóëüòàòå ÷èñëåííîãî ìîäåëèðîâàíèÿ âçàèìîäåéñòâèÿ çâóêîâûõ âîëí ñ ñîëíå÷íûìïÿòíîì ïîêàçàíî, ÷òî �ðîíò ðàññåÿííîé âîëíû îòñòàåò îò íåâîçìóùåííîãî �ðîíòà. Àìïëèòóäà�ðîíòà óâåëè÷èâàåòñÿ ïðè ïðîõîæäåíèè ÷åðåç ïÿòíî, ÷òî ïîäòâåðæäàåòñÿ íàáëþäåíèÿìè. Ñêîðîñòèïîâåðõíîñòíîé ñåéñìè÷åñêîé âîëíû ëåæàò â äèàïàçîíå îò 16.7 êì/ñ âáëèçè èñòî÷íèêà âîçìóùåíèÿäî 58.3 êì/ñ íà ðàññòîÿíèè 30 000 êì.NUMERICAL 3D SIMULATION OF ACOUSTIC WAVE SCATTERING BY THE SUNSPOT, byK.V. Parhevsky. A numerial model of the sunquake is built. The sunquake was observed by SOHOspaeraft on 6 July 1996. Numerial simulation of interation of aousti waves with the sunspot showsthat the sattered wavefront is delayed with respet to the unperturbed one. Amplitude of the wavefrontis inreased when propagating through the sunspot, whih is on�rmed by observations. Speed of thesurfae seismi wave is in range from 16.7 km/s near the soure to 58.3 km/s at the distane 30 000 km.Keywords: Sun, loal helioseismology, aoustis, numerial simulation1 IntrodutionA suess of helioseismology on global sales initiated investigation of reonstrution of solar interioron smaller sale (loal helioseismology). There are several methods for investigation of the interationof traveling aousti waves with small perturbations to the bakground state. One of them is the time-distane approah. The key onept of this method is the notion of wave travel time. Propagation of thehigh-frequeny aousti waves in this approah is alulated with ray theory. But, on theoretial grounds,the ray approximation is invalid near the surfae, where the pressure and density sales vary rapidly, andwave e�ets must be taken into aount (Bogdan, 1997). One important onsequene of wave e�ets is thefollowing: the travel time is sensitive not only to the loal medium properties along the ray path, but alsoto onditions in the surrounding medium as well. More over, the travel-time sensitivity kernels alulatedin the Born approximation (the �rst approximation to the wave theory) have zero value along the raypath (Kosovihev et al., 2000). So, transition from the geometrial aousti (ray) approximation to thewave theory is not redued to simple broadening of the ray kernels. One of the important onsequene isthat the sensitivity along the ray path is not proportional to the inverse loal sound speed, but may variessigni�antly espeially near the surfae (Stark, Nikolaev, 1993). In this situation realisti simulations of



Aousti wave sattering 75interation of traveled aousti waves with medium inhomogeneity are extremely welome. One dimen-sional alulations were made by Kosovihev and Duvall (1997). Two dimensional numerial simulationswere performed by Jensen, Jaobsen, and Christensen-Dalsgaard (1999). In this work a numerial 3Dsimulation of sattering of aousti waves on the sunsport is presented. Realisti physis was used duringthese alulations. Equation of state was alulated by interpolation of OPAL tables, radiation transportin di�usion approximation was taken into aount as well.2 Linearized Euler equationsAoustis problems are governed by the following linearized equations:
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where ρ′, p′, T ′, E′, E ′, u′, v′, w′ are perturbations of the density, pressure, temperature, total energy, spe-i� energy, and veloity omponents respetively, γ0 represents spei� heat cp/cv of the referene modelon the top boundary. Values in the referene state are denoted by zero subsript. The standard solar modelis hosen as a referene state. Radiation transport in di�usion approximation is taken into aount. Re-alisti equation of state is alulated using OPAL tables. Equations (1) are written in dimensionlessvariables in units of orresponding variables on the top boundary of the referene state. Dimensionlessparameters
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(2)represent squared Froude number and dimensionless inverse opaity respetively. Hat denotes values inthe referene state on the top boundary. Here c is the light speed, a = 8π5k4/15c3h3 is the radiationonstant, κ is the opaity, â2
0 = γ0p̂0/ρ̂0 is the squared sound speed in the referene model on the topboundary.As far as we study small perturbations of the referene state, we an use the following proedure foralulation of perturbations of thermodynami variables without diret aess to OPAL tables. Thermo-dynami quantities p0, ρ0, T0, E0, known from the referene model, are linked by the realisti equation ofstate, whih an be alulated by interpolation of OPAL tables. Assume, that the gas is loally perfet
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76 K.V. Parhevskywhere R∗ is the loal gas onstant whih is hanged from point to point. Hene for given quantities
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′ + ρ′T0). (6)3 Numerial shemeOne an write linearized Euler equations (1) in divirgent form
∂q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S, (7)where q = (ρ′, ρ0u
′, ρ0v

′, ρ0w
′, E′)T is the vetor of independent variables. Vetors F, G,H, and S an beeasily obtained from (1). Following Tam and Webb (1993), we generalized this approah for 3D. A high-order four-level �nite di�erene sheme was hosen to solve this system. A speial hoie of approximationof spatial and time derivatives permits us to preserve dispersion relations. Details of this tehnique willbe disussed in the next setion.q(n+1)
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i,k,j , (9)where i, k, j are the indies of the z, y and x mesh points respetively, n is the time level. If q = qinitialat t = 0 is the initial onditions for the Euler equations (1), the appropriate initial onditions for the�nite di�erene sheme an be hoosen in the following way:q(n)
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(10)Zero boundary onditions were imposed at the edges of omputational domain. Stability analysis showsthat proposed sheme is stable if time step ∆t smaller than
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Fig. 1. Approximation error α∆x − αe∆x of spatial derivative in the Fourier spae for two sets of aj obtainedanalytially (solid line) and numerially (dashed line). Set of oe�ients obtained analytially provides betterapproximation of spatial derivative for short wavesDamping analysis shows that the time step ∆t must meet the numerial damping riterion ∆t ≤ ∆tdampto prevent numerial damping, where expression for ∆tdamp is given by (11) with the numenator equals0.19 instead of 0.4. Numerial damping riterion is a more stringent riterion than that required fornumerial stability. In other words to avoid exessive numerial dumping we have to hoose time stepapproximately twie smaller than needed for numerial stability.4 Derivative approximationA high order dispersion-relation-preserving �nite di�erene sheme was used to preserve properties ofaousti waves of high frequeny. In usual high order �nite di�erene shemes the �rst spatial derivativein the l -th node is approximated in the following way
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ajfl+j , (13)where oe�ients aj are determined by expanding the right-hand side of (13) in Taylor series of ∆x endequating oe�ients of the same powers of ∆x. In dispersion-relation-preserving �nite di�erene shemethe oe�ients are hosen in a di�erent way to minimize the error of Fourier transform of the �rst spatialderivative. In other words, this sheme approximates the partial derivative in wave number spae andgives better approximation of short length aousti waves than usual Taylor series expansion. TakingFourier transform of the left and right hand side of Eq.(13), one an obtain
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Fig. 2. Temperature variations δT = Tspot − T0 in sunspot with respet to the referene model T0represents the e�etive wavenumber of Fourier transform of �nite di�erene sheme (13). E�etive wavenum-ber αe is real if we use a symmetrial stenil for �nite di�erene approximation of spatial derivative. Inthis ase the right hand side of Eq.(15) is a trunated Fourier series. To assure that the Fourier transformof the �nite di�erene sheme is a good approximation of the partial derivative in desired range of wavenumbers it is required that aj be hosen to minimize the integral error Ex, de�ned as
Ex =
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∫
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|α∆x − αe∆x|2 d(α∆x). (16)To �nd a minimum of the integral error Ex, a solution of the following system
∂Ex

∂aj
= 0, j = −3, ..., 3 (17)must be found. It is possible to ombine the traditional trunated Taylor series and wave number ap-proximation. We use 7-points entral di�erene sheme. Assumtion that (13) must be aurate to order

(∆x)4 leaves two oe�ient, say a1 and a−1, as free parameters, whih an be found from minimizationof integral error (16). It is straightforward to �nd an analytial solution for symmetrial −3 ÷ 3 stenil
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15π − 32

a±2 = ± 96 − 27π

128− 60π

a±3 = ∓ 20 − 6π

45π − 96

(18)
We have found an analytial solution to Eq.(17). It gives better approximation of Fourier transform (14)than the set of numerially omputed oe�ients proposed in (Tam, Webb, 1993). Error α∆x−αe∆x ofFourier transform versus α∆x for these two ases is illustrated on Fig.1. The dashed urve represents theFourier transform error for set of oe�ients proposed in (Tam, Webb, 1993). The solid urve shows error
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Fig. 3. Sattering of aousti waves from the single pressure pulse on the sunspot at the moment t = 151.4 min.Brightness denotes density perturbation. Cirle (on the left) and retangle (on the right) drawn by thik linesshow projetions of the sunspotfor analytially obtained set of oe�ients aj . It is lear that the set of oe�ients obtained analytiallyprovides better approximation of spatial derivative for short waves.On the boundaries we are fored to use a non-symmetrial stenil. Similar analytial solutions for
aj an be found in the ase of non-symmetrial stenils. Expliit formulas for the oe�ients of non-symmetrial stenils are written out in Appendix A.Similar expressions an be obtained for approximation of time derivativeq(n+1) − q(n) ≃ ∆t
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. (19)Three of four oe�ients bj for j = 1, 2, 3 are hosen so that (19) is satis�ed to order (∆t)3:
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(20)The remaining oe�ient b0 is determined by the requiring that the Laplae transform of the �nitedi�erene sheme (20) be a good approximation of that of partial derivative. Taking Laplae transformof the left and right hand side of Eq. (20), one an obtain
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Fig. 4. A series of four snapshots of the �sunquake� observed by SOHO spaeraft on 6 July 1996. Amplitude ofthe perturbed wavefront is inreased when the wave propagates through the sunspotrepresents the e�etive angular frequeny of the Laplae transform of Eq. (19). To assure that the Laplaetransform of the �nite di�erene sheme is a good approximation of the partial derivative the weghtedintegral error
Et =

1/2
∫

−1/2

{

σ[Re(ωe∆t − ω∆t)]2 + (1 − σ)[Im(ωe∆t − ω∆t))]2
}

d(ω∆t) (23)must be minimized by appropriate hoosing of b0. Here σ is the weight of real part. Coe�ient b0 anbe found as the root of the equation
dEt

db0
= 0. (24)The weight σ ∈ [0, 1] in Eq.(23) permits us to obtain either better wave propagation harateristis (realpart of ω) for σ → 1, or damping harateristis (imaginary part of ω) for σ → 0. A table of oe�ients

bj for di�erent values σ is presented in Appendix.
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Fig. 5. Position of the wavefront after t = 210.9 min. The solid line represents a slie through the sunspot, thedashed one represents slie in the perpendiular diretion5 Results and disussion3D version of algorithm disussed above was realized as a C++ program and applied for studying ofaousti wave propagation inside the Sun. Standard solar model was hosen as a referene state. Thereferene state is stati i.e. we have neither rotation nor onvetion in the referene state. Thermodynamiquantities ρ0, p0, T0, E0 of the referene state are onneted by realisti equation of state. To build thereferene state we start from the density pro�le ρ0(r) whih is taken from the standard solar model.Pressure pro�le is alulated from the ondition of hydrostati equilibrium
dp0

dr
= −ρ0(r)g0(r), g0(r) = G

4π
∫ r

0 ρ0(r
′) dr′

r2
, (25)where G is the gravitational onstant, g0(r) is the gravitational aeleration. When we know p0 and ρ0we an alulate T0 and E0 from equation of state, by interpolation of the OPAL tables.We studied propagation of aousti waves from a single pressure pulse loated near the surfae of theomputational domain, and wave sattering on the sunspot. Sunspot was approximated by the ylinderwith diameter D = 16 Mm and depth H = 40 Mm. To start simulation we have to know density, pressure,and temperature pro�les in the sunspot. We de�ne the temperature pro�le inside the sunspot by handsFig. 2. There is temperature inversion on the depth 4.8 Mm. We use the following iterative proedure toobtain pressure and density pro�les. As a zero order approximation we hoose the density pro�le ρ(0) = ρ0of the standard solar model and alulate p(0) from the ondition of hydrostati equilibrium. Using realistiOPAL equation of state we an alulate the �rst approximation for density: (Tspot, p

(0))
OPAL→ ρ(1). Werepeat this proedure until ρ(n+1) and ρ(n) beome su�iently lose eah other.Retangular omputational domain 57.6× 57.6× 52.0 Mm is overed by uniform grid 144× 144× 130with the step size ∆x = ∆y = ∆z = 400 km. Time step must be hosen in aordane with the limitation(12). Maximum sound speed a0 = 97.5 km/s is on the bottom boundary, hene ∆tmax = 0.54 s. As aninitial ondition a single spherially symmetri gaussian pressure pulse was hosen. It was plaed nearthe surfae of the omputational domain at the depth Hpulse = 800 km. Zero boundary onditions wereimposed on all boundaries. A snapshot of the omputational domain after t = 151.4 min is shown on Fig.3. Brightness denotes the density perturbation. The left piture represents a horizontal XY-slie of theomputational domain at the depth z = 800 km. The projetion of this slie on the XZ plane is shown



82 K.V. Parhevskyon the right piture by the thin horizontal line near the surfae. The right piture represents a vertialXZ-slie. Projetion of this slie on the XY plane is shown on the left piture by the thin vertial line.Thik irle on the left and thik retangle on the right represent projetions of the sunspot. Horizontaldashed line on the right piture shows a position of temperature inversion level in the sunspot. Simulationwas interrupted shortly after moment t = 210 min, beause the re�etion of aousti waves from zeroboundary onditions deteriorates the wave pattern ompletely. Results of series numerial simulations ofaousti wave sattering are presented as movies on the sitehttp://quake.stanford.edu/�pkv/HEPL/Seismology/Pulse.mpg (wave propagation without sunspot),Spot_R4Mm.mpg (aousti wave sattering on the sunspot with R = 4 Mm),Spot_R8Mm.mpg (aousti wave sattering on the sunspot with R = 8 Mm).These alulations represent a numerial model of the �sunquake� observed by SOHO on 6 July 1996.A series of four snapshots of the �sunquake� is shown on Fig. 4. One an see that the amplitude of thewave is inreased when it propagates trough the small sunspot on the lower right snapshot.Calulation of time delay of sattered wavefront is a problem of great interest. Results an be usedin helioseismology for reonstrution of solar internal struture using time distane tehnique. Positionof the wave front from single pressure pulse after t = 210.9 min is shown on Fig.5. The dashed linerepresents a slie of the left piture on Fig.3 in horizontal diretion. It is lear that this urve have to beapproximately symmetrial, beause these parts of the wave front are not perturbed by the sunspot. Itis interesting to ompare this urve with the perpendiular slie whih goes through the sunspot (solidline). The right part of this wavefront does not perturbed by the sunspot and almost oinide with thedashed urve. The left part of the wavefront perturbed by the sunspot is delayed in omparison withunperturbed part. Amplitude of the perturbed wavefront is inreased when the wave propagates throughthe sunspot, whih is on�rmed by observations.The time-distane diagram for the depth h = 800 km is shown on Fig. 6. Brightness denotes thedensity perturbation on the vertial slie of the left piture on Fig. 3. The slie goes through the sunspot.Its position is marked by the vertial solid line. It is important to emphasize that the lowest ridgeorresponding to the surfae seismi wave turns down while the wave front moves away from the soure.Slope of the ridge determines a horizontal speed whih inreases from 16.7 km/s near the soure to 58.3km/s at the distane 30 000 km. Inreasing of the surfae wave speed is on�rmed by SOHO observations.Aknowledgements. Author thanks Prof. Phil Sherrer for invitation author to HEPL of Stanford Uni-versity as a visiting sientist for three months that gave possibility to ful�l this work. Author thanks Dr.Alexander Kosovihev (sienti� advisor) for statement of the problem, fruitful disussions and valuableremarks, and also for providing everything one an wish for produtive work.
6 AppendixHere we write out formulas for oe�ients of non-symmetrial stenils used for approximation of spatialderivatives on the boundaries of the omputational domain.
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Fig. 6. Time distane diagram of the density perturbation on the depth h = 800 km. Position of the sunspot isshown by the vertial solid lines
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σ b0 b1 b2 b30.00 2.45081168 �2.93576836 2.01910170 �0.534145010.05 2.42695750 �2.86420582 1.94753916 �0.510290830.10 2.40418226 �2.79588012 1.87921345 �0.487515590.15 2.38248172 �2.73077849 1.81411182 �0.465815050.20 2.36183980 �2.66885273 1.75218606 �0.445173130.25 2.34223095 �2.61002619 1.69335953 �0.425564290.30 2.32362227 �2.55420014 1.63753347 �0.406955600.35 2.30597561 �2.50126015 1.58459349 �0.389308940.40 2.28924912 �2.45108071 1.53441404 �0.372582460.45 2.27339885 �2.40352988 1.48686321 �0.356732180.50 2.25837982 �2.35847280 1.44180613 �0.341713150.55 2.24414703 �2.31577442 1.39910776 �0.327480360.60 2.23065612 �2.27530171 1.35863504 �0.313989460.65 2.21786393 �2.23692512 1.32025845 �0.301197260.70 2.20572885 �2.20051990 1.28385323 �0.289062190.75 2.19421112 �2.16596669 1.24930003 �0.277544450.80 2.18327292 �2.13315210 1.21648543 �0.266606250.85 2.17287851 �2.10196886 1.18530219 �0.256211840.90 2.16299420 �2.07231594 1.15564927 �0.246327540.95 2.15358838 �2.04409848 1.12743181 �0.236921711.00 2.14463142 �2.01722761 1.10056094 �0.22796476ReferenesBogdan T. J. // Astroph.J. 1997. V. 477. P. 475.Kosovihev A. G., Duvall T. L. Jr., Sherrer P. // Solar Phys. 2000. V. 192. P. 159.Tam C., Webb J. // J. Comput. Phys. 1993. V. 107. P. 262.Stark P.B., Nikolaev D.I. // J. Geophys. Res. 1993. V. 98. P. 8095.Kosovihev A.G., Duvall T.L.Jr. // Aousti Tomography of Solar Convetive Flows and Strutures,SCORe'96: Solar Convetion and Osillations and their Relationship. Eds. F.P. Pijpers, J. Christensen-Dalsgaard, and C.S. Rosenthal, Kluwer Aademi Publishers, Dordreht, Holland, 1997. P. 241.
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