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hevsky. A numeri
al model of the sunquake is built. The sunquake was observed by SOHOspa
e
raft on 6 July 1996. Numeri
al simulation of intera
tion of a
ousti
 waves with the sunspot showsthat the s
attered wavefront is delayed with respe
t to the unperturbed one. Amplitude of the wavefrontis in
reased when propagating through the sunspot, whi
h is 
on�rmed by observations. Speed of thesurfa
e seismi
 wave is in range from 16.7 km/s near the sour
e to 58.3 km/s at the distan
e 30 000 km.Keywords: Sun, lo
al helioseismology, a
ousti
s, numeri
al simulation1 Introdu
tionA su

ess of helioseismology on global s
ales initiated investigation of re
onstru
tion of solar interioron smaller s
ale (lo
al helioseismology). There are several methods for investigation of the intera
tionof traveling a
ousti
 waves with small perturbations to the ba
kground state. One of them is the time-distan
e approa
h. The key 
on
ept of this method is the notion of wave travel time. Propagation of thehigh-frequen
y a
ousti
 waves in this approa
h is 
al
ulated with ray theory. But, on theoreti
al grounds,the ray approximation is invalid near the surfa
e, where the pressure and density s
ales vary rapidly, andwave e�e
ts must be taken into a

ount (Bogdan, 1997). One important 
onsequen
e of wave e�e
ts is thefollowing: the travel time is sensitive not only to the lo
al medium properties along the ray path, but alsoto 
onditions in the surrounding medium as well. More over, the travel-time sensitivity kernels 
al
ulatedin the Born approximation (the �rst approximation to the wave theory) have zero value along the raypath (Kosovi
hev et al., 2000). So, transition from the geometri
al a
ousti
 (ray) approximation to thewave theory is not redu
ed to simple broadening of the ray kernels. One of the important 
onsequen
e isthat the sensitivity along the ray path is not proportional to the inverse lo
al sound speed, but may variessigni�
antly espe
ially near the surfa
e (Stark, Nikolaev, 1993). In this situation realisti
 simulations of
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tion of traveled a
ousti
 waves with medium inhomogeneity are extremely wel
ome. One dimen-sional 
al
ulations were made by Kosovi
hev and Duvall (1997). Two dimensional numeri
al simulationswere performed by Jensen, Ja
obsen, and Christensen-Dalsgaard (1999). In this work a numeri
al 3Dsimulation of s
attering of a
ousti
 waves on the sunsport is presented. Realisti
 physi
s was used duringthese 
al
ulations. Equation of state was 
al
ulated by interpolation of OPAL tables, radiation transportin di�usion approximation was taken into a

ount as well.2 Linearized Euler equationsA
ousti
s problems are governed by the following linearized equations:
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(1)
where ρ′, p′, T ′, E′, E ′, u′, v′, w′ are perturbations of the density, pressure, temperature, total energy, spe-
i�
 energy, and velo
ity 
omponents respe
tively, γ0 represents spe
i�
 heat cp/cv of the referen
e modelon the top boundary. Values in the referen
e state are denoted by zero subs
ript. The standard solar modelis 
hosen as a referen
e state. Radiation transport in di�usion approximation is taken into a

ount. Re-alisti
 equation of state is 
al
ulated using OPAL tables. Equations (1) are written in dimensionlessvariables in units of 
orresponding variables on the top boundary of the referen
e state. Dimensionlessparameters

Fr2 =
â2
0

ĝ0L
, K̂ =

4ac

3κ

T̂ 4
0

â3
0ρ̂

2
0L

(2)represent squared Froude number and dimensionless inverse opa
ity respe
tively. Hat denotes values inthe referen
e state on the top boundary. Here c is the light speed, a = 8π5k4/15c3h3 is the radiation
onstant, κ is the opa
ity, â2
0 = γ0p̂0/ρ̂0 is the squared sound speed in the referen
e model on the topboundary.As far as we study small perturbations of the referen
e state, we 
an use the following pro
edure for
al
ulation of perturbations of thermodynami
 variables without dire
t a

ess to OPAL tables. Thermo-dynami
 quantities p0, ρ0, T0, E0, known from the referen
e model, are linked by the realisti
 equation ofstate, whi
h 
an be 
al
ulated by interpolation of OPAL tables. Assume, that the gas is lo
ally perfe
t

p = R∗ρT, E=
R∗T

γ − 1
, (3)
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hevskywhere R∗ is the lo
al gas 
onstant whi
h is 
hanged from point to point. Hen
e for given quantities
p0, ρ0, T0, E0 one 
an 
al
ulate lo
al values

(

R∗

γ − 1

)

0

=
E0

T0
, R∗

0 =
p0

ρ0T0
. (4)Assume, that for 
al
ulation of perturbed values E0 + E ′ and T0 + T ′ we 
an use the same 
onstants

E0 + E ′ =

(

R∗

γ − 1

)

0

(T0 + T ′), E ′=
E0

T0
T ′, (5)

p0 + p′ = R∗

0(ρ0 + ρ′)(T0 + T ′), p′ =
p0

ρ0T0
(ρ0T

′ + ρ′T0). (6)3 Numeri
al s
hemeOne 
an write linearized Euler equations (1) in divirgent form
∂q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S, (7)where q = (ρ′, ρ0u
′, ρ0v

′, ρ0w
′, E′)T is the ve
tor of independent variables. Ve
tors F, G,H, and S 
an beeasily obtained from (1). Following Tam and Webb (1993), we generalized this approa
h for 3D. A high-order four-level �nite di�eren
e s
heme was 
hosen to solve this system. A spe
ial 
hoi
e of approximationof spatial and time derivatives permits us to preserve dispersion relations. Details of this te
hnique willbe dis
ussed in the next se
tion.q(n+1)

i,k,j = q(n)
i,k,j + ∆t

3
∑

m=0

bmK(n−m)
i,k,j , (8)K(n)
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3
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∆y

3
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i,k+m,j

− 1

∆z

3
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m=−3

amH(n)
i+m,k,j + S(n)

i,k,j , (9)where i, k, j are the indi
es of the z, y and x mesh points respe
tively, n is the time level. If q = qinitialat t = 0 is the initial 
onditions for the Euler equations (1), the appropriate initial 
onditions for the�nite di�eren
e s
heme 
an be 
hoosen in the following way:q(n)
i,k,j =







q(n)
i,k,j = qinitial if n = 0q(n)
i,k,j = 0 if n < 0

(10)Zero boundary 
onditions were imposed at the edges of 
omputational domain. Stability analysis showsthat proposed s
heme is stable if time step ∆t smaller than
∆tmax =

∆z

a0

0.4

1.75
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+

√

1 +

(
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)2

+

(

∆y

∆z

)2




, (11)where u0 is the velo
ity of the mean �ow in the referen
e state, a0 is the sound speed. In our 
ase whenthe referen
e state is stati
 u0 = 0 and ∆x = ∆y = ∆z this expression redu
es to
∆tmax =

∆z

a0

0.4

1.75
√

3
. (12)
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Fig. 1. Approximation error α∆x − αe∆x of spatial derivative in the Fourier spa
e for two sets of aj obtainedanalyti
ally (solid line) and numeri
ally (dashed line). Set of 
oe�
ients obtained analyti
ally provides betterapproximation of spatial derivative for short wavesDamping analysis shows that the time step ∆t must meet the numeri
al damping 
riterion ∆t ≤ ∆tdampto prevent numeri
al damping, where expression for ∆tdamp is given by (11) with the numenator equals0.19 instead of 0.4. Numeri
al damping 
riterion is a more stringent 
riterion than that required fornumeri
al stability. In other words to avoid ex
essive numeri
al dumping we have to 
hoose time stepapproximately twi
e smaller than needed for numeri
al stability.4 Derivative approximationA high order dispersion-relation-preserving �nite di�eren
e s
heme was used to preserve properties ofa
ousti
 waves of high frequen
y. In usual high order �nite di�eren
e s
hemes the �rst spatial derivativein the l -th node is approximated in the following way
(

∂f

∂x

)

l

≃ 1

∆x

3
∑

j=−3

ajfl+j , (13)where 
oe�
ients aj are determined by expanding the right-hand side of (13) in Taylor series of ∆x endequating 
oe�
ients of the same powers of ∆x. In dispersion-relation-preserving �nite di�eren
e s
hemethe 
oe�
ients are 
hosen in a di�erent way to minimize the error of Fourier transform of the �rst spatialderivative. In other words, this s
heme approximates the partial derivative in wave number spa
e andgives better approximation of short length a
ousti
 waves than usual Taylor series expansion. TakingFourier transform of the left and right hand side of Eq.(13), one 
an obtain
iαf̃ ≃ f̃

∆x

3
∑

m=−3

ameimα∆x, (14)where � represents the Fourier transform. Quantity
αe = − i

∆x

3
∑

m=−3

ameimα∆x (15)
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Fig. 2. Temperature variations δT = Tspot − T0 in sunspot with respe
t to the referen
e model T0represents the e�e
tive wavenumber of Fourier transform of �nite di�eren
e s
heme (13). E�e
tive wavenum-ber αe is real if we use a symmetri
al sten
il for �nite di�eren
e approximation of spatial derivative. Inthis 
ase the right hand side of Eq.(15) is a trun
ated Fourier series. To assure that the Fourier transformof the �nite di�eren
e s
heme is a good approximation of the partial derivative in desired range of wavenumbers it is required that aj be 
hosen to minimize the integral error Ex, de�ned as
Ex =

π/2
∫

−π/2

|α∆x − αe∆x|2 d(α∆x). (16)To �nd a minimum of the integral error Ex, a solution of the following system
∂Ex

∂aj
= 0, j = −3, ..., 3 (17)must be found. It is possible to 
ombine the traditional trun
ated Taylor series and wave number ap-proximation. We use 7-points 
entral di�eren
e s
heme. Assumtion that (13) must be a

urate to order

(∆x)4 leaves two 
oe�
ient, say a1 and a−1, as free parameters, whi
h 
an be found from minimizationof integral error (16). It is straightforward to �nd an analyti
al solution for symmetri
al −3 ÷ 3 sten
il

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a0 = 0

a±1 = ∓ 12

15π − 32

a±2 = ± 96 − 27π

128− 60π

a±3 = ∓ 20 − 6π

45π − 96

(18)
We have found an analyti
al solution to Eq.(17). It gives better approximation of Fourier transform (14)than the set of numeri
ally 
omputed 
oe�
ients proposed in (Tam, Webb, 1993). Error α∆x−αe∆x ofFourier transform versus α∆x for these two 
ases is illustrated on Fig.1. The dashed 
urve represents theFourier transform error for set of 
oe�
ients proposed in (Tam, Webb, 1993). The solid 
urve shows error
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Fig. 3. S
attering of a
ousti
 waves from the single pressure pulse on the sunspot at the moment t = 151.4 min.Brightness denotes density perturbation. Cir
le (on the left) and re
tangle (on the right) drawn by thi
k linesshow proje
tions of the sunspotfor analyti
ally obtained set of 
oe�
ients aj . It is 
lear that the set of 
oe�
ients obtained analyti
allyprovides better approximation of spatial derivative for short waves.On the boundaries we are for
ed to use a non-symmetri
al sten
il. Similar analyti
al solutions for
aj 
an be found in the 
ase of non-symmetri
al sten
ils. Expli
it formulas for the 
oe�
ients of non-symmetri
al sten
ils are written out in Appendix A.Similar expressions 
an be obtained for approximation of time derivativeq(n+1) − q(n) ≃ ∆t

3
∑

j=0

bj

(

dq
dt

)(n−j)

. (19)Three of four 
oe�
ients bj for j = 1, 2, 3 are 
hosen so that (19) is satis�ed to order (∆t)3:

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b1 = −3b0 +
53

12
,

b2 = 3b0 −
16

3
,

b3 = −b0 +
23

12
.

(20)The remaining 
oe�
ient b0 is determined by the requiring that the Lapla
e transform of the �nitedi�eren
e s
heme (20) be a good approximation of that of partial derivative. Taking Lapla
e transformof the left and right hand side of Eq. (20), one 
an obtain
−i

i
(

e−iω∆t − 1
)

∆t
∑3

m=0 bmeimω∆t
�q ≃ −iω�q, (21)where � represents the Lapla
e transform. Quantity

ωe =
i
(

e−iω∆t − 1
)

∆t
∑3

m=0 bmeimω∆t
(22)
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Fig. 4. A series of four snapshots of the �sunquake� observed by SOHO spa
e
raft on 6 July 1996. Amplitude ofthe perturbed wavefront is in
reased when the wave propagates through the sunspotrepresents the e�e
tive angular frequen
y of the Lapla
e transform of Eq. (19). To assure that the Lapla
etransform of the �nite di�eren
e s
heme is a good approximation of the partial derivative the weghtedintegral error
Et =

1/2
∫

−1/2

{

σ[Re(ωe∆t − ω∆t)]2 + (1 − σ)[Im(ωe∆t − ω∆t))]2
}

d(ω∆t) (23)must be minimized by appropriate 
hoosing of b0. Here σ is the weight of real part. Coe�
ient b0 
anbe found as the root of the equation
dEt

db0
= 0. (24)The weight σ ∈ [0, 1] in Eq.(23) permits us to obtain either better wave propagation 
hara
teristi
s (realpart of ω) for σ → 1, or damping 
hara
teristi
s (imaginary part of ω) for σ → 0. A table of 
oe�
ients

bj for di�erent values σ is presented in Appendix.
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Fig. 5. Position of the wavefront after t = 210.9 min. The solid line represents a sli
e through the sunspot, thedashed one represents sli
e in the perpendi
ular dire
tion5 Results and dis
ussion3D version of algorithm dis
ussed above was realized as a C++ program and applied for studying ofa
ousti
 wave propagation inside the Sun. Standard solar model was 
hosen as a referen
e state. Thereferen
e state is stati
 i.e. we have neither rotation nor 
onve
tion in the referen
e state. Thermodynami
quantities ρ0, p0, T0, E0 of the referen
e state are 
onne
ted by realisti
 equation of state. To build thereferen
e state we start from the density pro�le ρ0(r) whi
h is taken from the standard solar model.Pressure pro�le is 
al
ulated from the 
ondition of hydrostati
 equilibrium
dp0

dr
= −ρ0(r)g0(r), g0(r) = G

4π
∫ r

0 ρ0(r
′) dr′

r2
, (25)where G is the gravitational 
onstant, g0(r) is the gravitational a

eleration. When we know p0 and ρ0we 
an 
al
ulate T0 and E0 from equation of state, by interpolation of the OPAL tables.We studied propagation of a
ousti
 waves from a single pressure pulse lo
ated near the surfa
e of the
omputational domain, and wave s
attering on the sunspot. Sunspot was approximated by the 
ylinderwith diameter D = 16 Mm and depth H = 40 Mm. To start simulation we have to know density, pressure,and temperature pro�les in the sunspot. We de�ne the temperature pro�le inside the sunspot by handsFig. 2. There is temperature inversion on the depth 4.8 Mm. We use the following iterative pro
edure toobtain pressure and density pro�les. As a zero order approximation we 
hoose the density pro�le ρ(0) = ρ0of the standard solar model and 
al
ulate p(0) from the 
ondition of hydrostati
 equilibrium. Using realisti
OPAL equation of state we 
an 
al
ulate the �rst approximation for density: (Tspot, p

(0))
OPAL→ ρ(1). Werepeat this pro
edure until ρ(n+1) and ρ(n) be
ome su�
iently 
lose ea
h other.Re
tangular 
omputational domain 57.6× 57.6× 52.0 Mm is 
overed by uniform grid 144× 144× 130with the step size ∆x = ∆y = ∆z = 400 km. Time step must be 
hosen in a

ordan
e with the limitation(12). Maximum sound speed a0 = 97.5 km/s is on the bottom boundary, hen
e ∆tmax = 0.54 s. As aninitial 
ondition a single spheri
ally symmetri
 gaussian pressure pulse was 
hosen. It was pla
ed nearthe surfa
e of the 
omputational domain at the depth Hpulse = 800 km. Zero boundary 
onditions wereimposed on all boundaries. A snapshot of the 
omputational domain after t = 151.4 min is shown on Fig.3. Brightness denotes the density perturbation. The left pi
ture represents a horizontal XY-sli
e of the
omputational domain at the depth z = 800 km. The proje
tion of this sli
e on the XZ plane is shown
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hevskyon the right pi
ture by the thin horizontal line near the surfa
e. The right pi
ture represents a verti
alXZ-sli
e. Proje
tion of this sli
e on the XY plane is shown on the left pi
ture by the thin verti
al line.Thi
k 
ir
le on the left and thi
k re
tangle on the right represent proje
tions of the sunspot. Horizontaldashed line on the right pi
ture shows a position of temperature inversion level in the sunspot. Simulationwas interrupted shortly after moment t = 210 min, be
ause the re�e
tion of a
ousti
 waves from zeroboundary 
onditions deteriorates the wave pattern 
ompletely. Results of series numeri
al simulations ofa
ousti
 wave s
attering are presented as movies on the sitehttp://quake.stanford.edu/�pkv/HEPL/Seismology/Pulse.mpg (wave propagation without sunspot),Spot_R4Mm.mpg (a
ousti
 wave s
attering on the sunspot with R = 4 Mm),Spot_R8Mm.mpg (a
ousti
 wave s
attering on the sunspot with R = 8 Mm).These 
al
ulations represent a numeri
al model of the �sunquake� observed by SOHO on 6 July 1996.A series of four snapshots of the �sunquake� is shown on Fig. 4. One 
an see that the amplitude of thewave is in
reased when it propagates trough the small sunspot on the lower right snapshot.Cal
ulation of time delay of s
attered wavefront is a problem of great interest. Results 
an be usedin helioseismology for re
onstru
tion of solar internal stru
ture using time distan
e te
hnique. Positionof the wave front from single pressure pulse after t = 210.9 min is shown on Fig.5. The dashed linerepresents a sli
e of the left pi
ture on Fig.3 in horizontal dire
tion. It is 
lear that this 
urve have to beapproximately symmetri
al, be
ause these parts of the wave front are not perturbed by the sunspot. Itis interesting to 
ompare this 
urve with the perpendi
ular sli
e whi
h goes through the sunspot (solidline). The right part of this wavefront does not perturbed by the sunspot and almost 
oin
ide with thedashed 
urve. The left part of the wavefront perturbed by the sunspot is delayed in 
omparison withunperturbed part. Amplitude of the perturbed wavefront is in
reased when the wave propagates throughthe sunspot, whi
h is 
on�rmed by observations.The time-distan
e diagram for the depth h = 800 km is shown on Fig. 6. Brightness denotes thedensity perturbation on the verti
al sli
e of the left pi
ture on Fig. 3. The sli
e goes through the sunspot.Its position is marked by the verti
al solid line. It is important to emphasize that the lowest ridge
orresponding to the surfa
e seismi
 wave turns down while the wave front moves away from the sour
e.Slope of the ridge determines a horizontal speed whi
h in
reases from 16.7 km/s near the sour
e to 58.3km/s at the distan
e 30 000 km. In
reasing of the surfa
e wave speed is 
on�rmed by SOHO observations.A
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6 AppendixHere we write out formulas for 
oe�
ients of non-symmetri
al sten
ils used for approximation of spatialderivatives on the boundaries of the 
omputational domain.
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Fig. 6. Time distan
e diagram of the density perturbation on the depth h = 800 km. Position of the sunspot isshown by the verti
al solid lines
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