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Awnnoranus. [Tocrpoena anciennas Mozensb “comunerpsicenus’, Habmomapiierocsa cuyraunkom SOHO 6
utosisi 1996 r. B pesysbrare 4ucieHHOr0 MOAEIUPOBAHUS B3aUMOIEHCTBHUS 3BYKOBBIX BOJH C COJTHEIHBIM
MSTHOM TOKA3aHO, YTO (DPOHT PACCESHHON BOJIHBI OTCTaeT OT HEBO3MYIIEHHOTO (bpoHTa. AMIIHTYIA
dbpoHTa yBETUINBAETCS TPY MTPOXOKICHUH 9€pe3 TATHO, UTO TOATBepKaaeTcs Habmogernayu. CKOpOCTH
MOBEPXHOCTHOMN CefCMUYECKOH BOJIHBI JIEXKAT B IUATA30HE OT 16.7 KM/C BOMM3N NCTOYHNKA BO3MYIIEHHS
no 58.3 km/c Ha paccrogauu 30 000 kM.

NUMERICAL 3D SIMULATION OF ACOUSTIC WAVE SCATTERING BY THE SUNSPOT, by
K.V. Parchevsky. A numerical model of the sunquake is built. The sunquake was observed by SOHO
spacecraft on 6 July 1996. Numerical simulation of interaction of acoustic waves with the sunspot shows
that the scattered wavefront is delayed with respect to the unperturbed one. Amplitude of the wavefront
is increased when propagating through the sunspot, which is confirmed by observations. Speed of the
surface seismic wave is in range from 16.7 km /s near the source to 58.3 km/s at the distance 30 000 km.
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1 Introduction

A success of helioseismology on global scales initiated investigation of reconstruction of solar interior
on smaller scale (local helioseismology). There are several methods for investigation of the interaction
of traveling acoustic waves with small perturbations to the background state. One of them is the time-
distance approach. The key concept of this method is the notion of wave travel time. Propagation of the
high-frequency acoustic waves in this approach is calculated with ray theory. But, on theoretical grounds,
the ray approximation is invalid near the surface, where the pressure and density scales vary rapidly, and
wave effects must be taken into account (Bogdan, 1997). One important consequence of wave effects is the
following: the travel time is sensitive not only to the local medium properties along the ray path, but also
to conditions in the surrounding medium as well. More over, the travel-time sensitivity kernels calculated
in the Born approximation (the first approximation to the wave theory) have zero value along the ray
path (Kosovichev et al., 2000). So, transition from the geometrical acoustic (ray) approximation to the
wave theory is not reduced to simple broadening of the ray kernels. One of the important consequence is
that the sensitivity along the ray path is not proportional to the inverse local sound speed, but may varies
significantly especially near the surface (Stark, Nikolaev, 1993). In this situation realistic simulations of
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interaction of traveled acoustic waves with medium inhomogeneity are extremely welcome. One dimen-
sional calculations were made by Kosovichev and Duvall (1997). Two dimensional numerical simulations
were performed by Jensen, Jacobsen, and Christensen-Dalsgaard (1999). In this work a numerical 3D
simulation of scattering of acoustic waves on the sunsport is presented. Realistic physics was used during
these calculations. Equation of state was calculated by interpolation of OPAL tables, radiation transport
in diffusion approximation was taken into account as well.

2 Linearized Euler equations

Acoustics problems are governed by the following linearized equations:
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where p/,p',T',E',E',u/,v',w' are perturbations of the density, pressure, temperature, total energy, spe-
cific energy, and velocity components respectively, o represents specific heat ¢, /c, of the reference model
on the top boundary. Values in the reference state are denoted by zero subscript. The standard solar model
is chosen as a reference state. Radiation transport in diffusion approximation is taken into account. Re-
alistic equation of state is calculated using OPAL tables. Equations (1) are written in dimensionless
variables in units of corresponding variables on the top boundary of the reference state. Dimensionless
parameters
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represent squared Froude number and dimensionless inverse opacity respectively. Hat denotes values in
the reference state on the top boundary. Here c is the light speed, a = 87°k*/15¢3h? is the radiation
constant, k is the opacity, a2 = vopo/po is the squared sound speed in the reference model on the top
boundary.

As far as we study small perturbations of the reference state, we can use the following procedure for
calculation of perturbations of thermodynamic variables without direct access to OPAL tables. Thermo-
dynamic quantities pg, po, 10, £y, known from the reference model, are linked by the realistic equation of
state, which can be calculated by interpolation of OPAL tables. Assume, that the gas is locally perfect
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where R* is the local gas constant which is changed from point to point. Hence for given quantities
Do, Po, Lo, o one can calculate local values

<R* > & pr_ Do (4)
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Assume, that for calculation of perturbed values & + £’ and Ty + T we can use the same constants

R* &o
! — T T/ /: _T/
50+g (7_1)0( 0+ )a g TO ) (5)
* p
po+p =Rilpo+p)To+T"), p = po%o (poT" + p'Tp). (6)

3 Numerical scheme

One can write linearized Euler equations (1) in divirgent form

0q OF 0G OH -
ot Tox "oy T os ™
where q = (o', pou/, pov’, pow’, E')T is the vector of independent variables. Vectors F, G, H, and S can be
easily obtained from (1). Following Tam and Webb (1993), we generalized this approach for 3D. A high-
order four-level finite difference scheme was chosen to solve this system. A special choice of approximation
of spatial and time derivatives permits us to preserve dispersion relations. Details of this technique will
be discussed in the next section.
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where ¢, k, j are the indices of the z, y and x mesh points respectively, n is the time level. If 9 = Q;,,5¢5a:
at t = 0 is the initial conditions for the Euler equations (1), the appropriate initial conditions for the
finite difference scheme can be choosen in the following way:
) qﬁf,?,j = Qinitiq £ =0
Yk = (n) ) (10)
q; ;=0 ifn<0

Zero boundary conditions were imposed at the edges of computational domain. Stability analysis shows
that proposed scheme is stable if time step At smaller than

Atmax = ﬁ 04 ) (11)
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where ug is the velocity of the mean flow in the reference state, ag is the sound speed. In our case when
the reference state is static ug = 0 and Ax = Ay = Az this expression reduces to
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Fig. 1. Approximation error aAxr — ac. Az of spatial derivative in the Fourier space for two sets of a; obtained
analytically (solid line) and numerically (dashed line). Set of coefficients obtained analytically provides better
approximation of spatial derivative for short waves

Damping analysis shows that the time step At must meet the numerical damping criterion At < Atgamyp
to prevent numerical damping, where expression for Atgqm,p is given by (11) with the numenator equals
0.19 instead of 0.4. Numerical damping criterion is a more stringent criterion than that required for
numerical stability. In other words to avoid excessive numerical dumping we have to choose time step
approximately twice smaller than needed for numerical stability.

4 Derivative approximation

A high order dispersion-relation-preserving finite difference scheme was used to preserve properties of
acoustic waves of high frequency. In usual high order finite difference schemes the first spatial derivative
in the /-th node is approximated in the following way

3
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where coefficients a; are determined by expanding the right-hand side of (13) in Taylor series of Az end
equating coefficients of the same powers of Ax. In dispersion-relation-preserving finite difference scheme
the coeflicients are chosen in a different way to minimize the error of Fourier transform of the first spatial
derivative. In other words, this scheme approximates the partial derivative in wave number space and
gives better approximation of short length acoustic waves than usual Taylor series expansion. Taking
Fourier transform of the left and right hand side of Eq.(13), one can obtain
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where ~ represents the Fourier transform. Quantity
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Fig. 2. Temperature variations 67 = Tspot — Tp in sunspot with respect to the reference model Ty

represents the effective wavenumber of Fourier transform of finite difference scheme (13). Effective wavenum-
ber a. is real if we use a symmetrical stencil for finite difference approximation of spatial derivative. In
this case the right hand side of Eq.(15) is a truncated Fourier series. To assure that the Fourier transform
of the finite difference scheme is a good approximation of the partial derivative in desired range of wave
numbers it is required that a; be chosen to minimize the integral error £, defined as
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To find a minimum of the integral error E,, a solution of the following system
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must be found. It is possible to combine the traditional truncated Taylor series and wave number ap-
proximation. We use 7-points central difference scheme. Assumtion that (13) must be accurate to order
(Ax)* leaves two coefficient, say a; and a_1, as free parameters, which can be found from minimization
of integral error (16). It is straightforward to find an analytical solution for symmetrical —3 < 3 stencil
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We have found an analytical solution to Eq.(17). It gives better approximation of Fourier transform (14)
than the set of numerically computed coefficients proposed in (Tam, Webb, 1993). Error aAx — a. Az of
Fourier transform versus aAx for these two cases is illustrated on Fig.1. The dashed curve represents the
Fourier transform error for set of coefficients proposed in (Tam, Webb, 1993). The solid curve shows error
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Fig. 3. Scattering of acoustic waves from the single pressure pulse on the sunspot at the moment ¢t = 151.4 min.
Brightness denotes density perturbation. Circle (on the left) and rectangle (on the right) drawn by thick lines
show projections of the sunspot

for analytically obtained set of coefficients a;. It is clear that the set of coefficients obtained analytically
provides better approximation of spatial derivative for short waves.

On the boundaries we are forced to use a non-symmetrical stencil. Similar analytical solutions for
a; can be found in the case of non-symmetrical stencils. Explicit formulas for the coefficients of non-
symmetrical stencils are written out in Appendix A.

Similar expressions can be obtained for approximation of time derivative
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Three of four coefficients b; for j = 1,2,3 are chosen so that (19) is satisfied to order (At)3:
53
by = —3bg + 12’
16
by = 3bo — 3 (20)
23
bs = —b —.
3 o + 12

The remaining coefficient by is determined by the requiring that the Laplace transform of the finite
difference scheme (20) be a good approximation of that of partial derivative. Taking Laplace transform
of the left and right hand side of Eq. (20), one can obtain
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Fig. 4. A series of four snapshots of the “sunquake” observed by SOHO spacecraft on 6 July 1996. Amplitude of
the perturbed wavefront is increased when the wave propagates through the sunspot

represents the effective angular frequency of the Laplace transform of Eq. (19). To assure that the Laplace
transform of the finite difference scheme is a good approximation of the partial derivative the weghted
integral error

1/2
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must be minimized by appropriate choosing of by. Here ¢ is the weight of real part. Coefficient by can
be found as the root of the equation

dE;

— = 0. 24

&by (24)
The weight o € [0,1] in Eq.(23) permits us to obtain either better wave propagation characteristics (real
part of w) for ¢ — 1, or damping characteristics (imaginary part of w) for o — 0. A table of coefficients
b; for different values o is presented in Appendix.
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Fig. 5. Position of the wavefront after ¢ = 210.9 min. The solid line represents a slice through the sunspot, the
dashed one represents slice in the perpendicular direction

5 Results and discussion

3D version of algorithm discussed above was realized as a C++ program and applied for studying of
acoustic wave propagation inside the Sun. Standard solar model was chosen as a reference state. The
reference state is static i.e. we have neither rotation nor convection in the reference state. Thermodynamic
quantities pg, po, To, Eo of the reference state are connected by realistic equation of state. To build the
reference state we start from the density profile po(r) which is taken from the standard solar model.
Pressure profile is calculated from the condition of hydrostatic equilibrium

d A [T po(r') dr’
Do _ —po(1)go(r), go(r) = GM

dr r2 ) (25)

where G is the gravitational constant, go(r) is the gravitational acceleration. When we know pg and pg
we can calculate Ty and & from equation of state, by interpolation of the OPAL tables.

We studied propagation of acoustic waves from a single pressure pulse located near the surface of the
computational domain, and wave scattering on the sunspot. Sunspot was approximated by the cylinder
with diameter D = 16 Mm and depth H = 40 Mm. To start simulation we have to know density, pressure,
and temperature profiles in the sunspot. We define the temperature profile inside the sunspot by hands
Fig. 2. There is temperature inversion on the depth 4.8 Mm. We use the following iterative procedure to
obtain pressure and density profiles. As a zero order approximation we choose the density profile p(9) = pg
of the standard solar model and calculate p(®) from the condition of hydrostatic equilibrium. Using realistic
OPAL equation of state we can calculate the first approximation for density: (Tspor, p(¥) 25" p(). We
repeat this procedure until p("*t1) and p(™ become sufficiently close each other.

Rectangular computational domain 57.6 x 57.6 x 52.0 Mm is covered by uniform grid 144 x 144 x 130
with the step size Ax = Ay = Az = 400 km. Time step must be chosen in accordance with the limitation
(12). Maximum sound speed ag = 97.5 km/s is on the bottom boundary, hence At,,,,, = 0.54 s. As an
initial condition a single spherically symmetric gaussian pressure pulse was chosen. It was placed near
the surface of the computational domain at the depth Hp,;sc = 800 km. Zero boundary conditions were
imposed on all boundaries. A snapshot of the computational domain after ¢t = 151.4 min is shown on Fig.
3. Brightness denotes the density perturbation. The left picture represents a horizontal XY-slice of the
computational domain at the depth z = 800 km. The projection of this slice on the XZ plane is shown
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on the right picture by the thin horizontal line near the surface. The right picture represents a vertical
XZ-slice. Projection of this slice on the XY plane is shown on the left picture by the thin vertical line.
Thick circle on the left and thick rectangle on the right represent projections of the sunspot. Horizontal
dashed line on the right picture shows a position of temperature inversion level in the sunspot. Simulation
was interrupted shortly after moment ¢ = 210 min, because the reflection of acoustic waves from zero
boundary conditions deteriorates the wave pattern completely. Results of series numerical simulations of
acoustic wave scattering are presented as movies on the site

http://quake.stanford.edu/ "pkv/HEPL/Seismology/

Pulse.mpg (wave propagation without sunspot),

Spot_ R4AMm.mpg (acoustic wave scattering on the sunspot with R = 4 Mm),
Spot_ R8Mm.mpg (acoustic wave scattering on the sunspot with R = 8 Mm).

These calculations represent a numerical model of the “sunquake” observed by SOHO on 6 July 1996.
A series of four snapshots of the “sunquake” is shown on Fig. 4. One can see that the amplitude of the
wave is increased when it propagates trough the small sunspot on the lower right snapshot.

Calculation of time delay of scattered wavefront is a problem of great interest. Results can be used
in helioseismology for reconstruction of solar internal structure using time distance technique. Position
of the wave front from single pressure pulse after ¢ = 210.9 min is shown on Fig.5. The dashed line
represents a slice of the left picture on Fig.3 in horizontal direction. It is clear that this curve have to be
approximately symmetrical, because these parts of the wave front are not perturbed by the sunspot. It
is interesting to compare this curve with the perpendicular slice which goes through the sunspot (solid
line). The right part of this wavefront does not perturbed by the sunspot and almost coincide with the
dashed curve. The left part of the wavefront perturbed by the sunspot is delayed in comparison with
unperturbed part. Amplitude of the perturbed wavefront is increased when the wave propagates through
the sunspot, which is confirmed by observations.

The time-distance diagram for the depth A = 800 km is shown on Fig. 6. Brightness denotes the
density perturbation on the vertical slice of the left picture on Fig. 3. The slice goes through the sunspot.
Its position is marked by the vertical solid line. It is important to emphasize that the lowest ridge
corresponding to the surface seismic wave turns down while the wave front moves away from the source.
Slope of the ridge determines a horizontal speed which increases from 16.7 km /s near the source to 58.3
km/s at the distance 30 000 km. Increasing of the surface wave speed is confirmed by SOHO observations.
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6 Appendix

Here we write out formulas for coefficients of non-symmetrical stencils used for approximation of spatial
derivatives on the boundaries of the computational domain.
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Fig. 6. Time distance diagram of the density perturbation on the depth ~ = 800 km. Position of the sunspot is
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g bo bl b2 b3
0.00 245081168 2.93576836 2.01910170 _0.53414501
0.05 2.42695750 ~2.86420582 1.94753916 —0.51029083
0.10 2.40418226 ~2.79588012 1.87921345 —0.48751559
0.15 2.38248172 ~2.73077849 1.81411182 —0.46581505
0.20 2.36183980 ~2.66885273 1.75218606 —0.44517313
0.25 2.34223095 ~2.61002619 1.69335953 —0.42556429
0.30 2.32362227 2.55420014 1.63753347 —0.40695560
0.35 2.30597561 ~2.50126015 1.58459349 —0.38930894
0.40 2.28924912 245108071 1.53441404 —0.37258246
0.45 2.27339885 2.40352988 1.48686321 —0.35673218
0.50 2.25837982 ~2.35847280 1.44180613 —0.34171315
0.55 2.24414703 ~2.31577442 1.39910776 —0.32748036
0.60 2.23065612 227530171 1.35863504 —0.31398946
0.65 221786393 ~2.23692512 1.32025845 ~0.30119726
0.70 2.20572885 ~2.20051990 1.28385323 —0.28906219
0.75 219421112 2.16596669 1.24930003 —0.27754445
0.80 2.18327292 ~2.13315210 1.21648543 —0.26660625
0.85 2.17287851 ~2.10196886 1.18530219 —0.25621184
0.90 2.16299420 ~2.07231594 1.15564927 —0.24632754
0.95 2.15358838 ~2.04400848 1.12743181 —0.23692171
1.00 2.14463142 2.01722761 1.10056094 —0.22796476
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