Изв. Крымской Астрофиз. Обс. 104, № 1, 161–168 (2008)

УДК 524.3:520.85

Анализ кривых блеска асинхронного поляра BY Cam в низком аккреционном состоянии на разных фазах периода биения

IO.B. Бабина 1 , E.П. Павленко 1 , M.B. Андреев 2

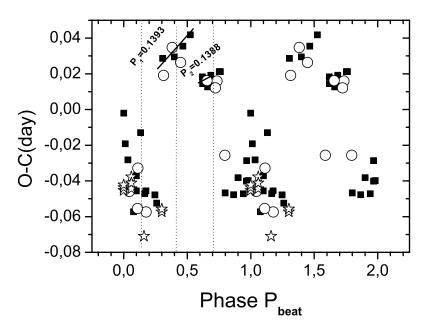
Поступила в редакцию 20 февраля 2008 г.

Аннотация. В работе представлены результаты фотометрических наблюдений асинхронного поляра ВУ Сат в низком аккреционном состоянии с 2004 по 2007 гг. Показано, что характер кривых блеска зависит от фаз периода биения, и что они изменяются не хаотически от цикла к циклу.

THE LIGHT CURVES ANALYSIS OF THE ASYNCHRONOUS POLAR BY CAM IN THE LOW ACCRETION STATE AT DIFFERENT BEAT PHASES, by Yu.V. Babina, E.P. Pavlenko, M.V. Andreev. The results of photometric observations of asynchronous polar BY Cam in the low accretion state in 2004–2007 are presented. It is shown that the light curve profiles change not chaotically from cycle to cycle but depend on the beat phase.

Ключевые слова: катаклизмическая переменная, поляр ВҮ Сат

1 Введение


ВҮ Сат относится к подклассу магнитных новоподобных катаклизмических переменных. У этой системы вторичный компонент — маломассивный красный карлик, заполнивший свою полость Роша, вследствие чего происходит перенос вещества на первичный компонент — белый карлик с магнитным полем. Магнитные поля таких белых карликов обычно достаточно сильны $(10^7 - 10^8 \ \Gamma c)$, чтобы предотвратить образование аккреционного диска и являются основным механизмом управления аккрецией. Вещество из аккреционной струи, попадая в область действия магнитного поля, начинает двигаться вдоль силовых линий и выпадает в область магнитных полюсов.

У такого подкласса катаклизмических переменных наблюдается непредсказуемый вход в высокое состояние яркости, в котором они могут пребывать от нескольких месяцев до нескольких лет, и такой же непредсказуемый выход из него — в низкое состояние яркости, тоже на неопределенное время (Уорнер, 1995). В таких же состояниях яркости наблюдается и ВУ Сат. С 2004 года он находится в низком состоянии.

Благодаря действию магнитного поля у поляров в большинстве случаев период вращения белого карлика синхронизирован с орбитальным периодом всей системы, но существуют исключения — поляры с асинхронным вращением. Таких асинхронных систем известно только четыре, и одна из них — BY Cam. В синхронных системах ориентация магнитного поля постоянна относительно красного карлика, а у асинхронных она непрерывно изменяется с фазой синодического цикла, т. е. периода биения P_{beat} :

¹ НИИ "Крымская астрофизическая обсерватория", 98409, Украина, Крым, Научный

² Институт астрономии РАН, Терскол, Россия

Рис. 1. Зависимость O–C от фаз синодического цикла. Квадратиками обозначены данные, полученные в период с JD 53089–53412, кружками – с JD 53513–53654, звездочками – с JD 53703–53789. Ошибка измерения составила от $0.^m001$ до $0.^m005$

$$1/P_{beat} = 1/P_{rot} - 1/P_{orb},$$

где P_{rot} — период вращения белого карлика, а P_{orb} — его орбитальный период. Таким образом, ВҮ Сам может дать прекрасную возможность изучения структуры магнитного поля белого карлика и режимов аккреции путем исследования состояния системы на разных фазах периода биения. На сегодняшнее время у ВҮ Сам известно три периода: $P_{rot} = 0.138428 \pm 0.000002$ суток (Мэйсон, 1989), $P_{orb} = 0.139759 \pm 0.000003$ суток (Мэйсон, 1996), $P_{beat} = 14.568 \pm 0.003$ суток (Павленко, 2006).

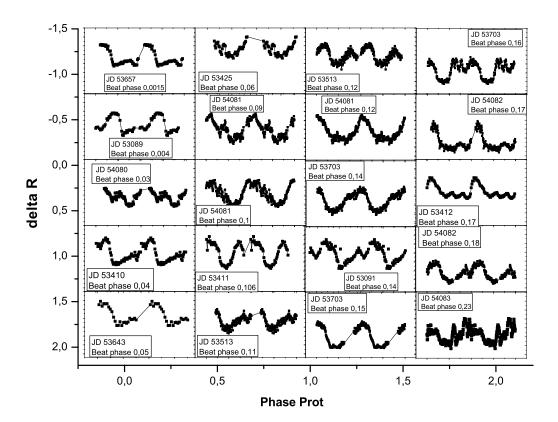
2 Наблюдения

В работе представлены результаты фотометрических ПЗС-наблюдений поляра в 2004–2007 гг. ВУ Сам наблюдался на 38-см телескопе Крымской астрофизической обсерватории, на 60-см Цейссе и 2-м телескопах на Терсколе, на 1-м телескопе в Симеизской обсерватории на г. Кошка в фотометрической системе Джонсона, преимущественно в фильтре R. Всего анализировались данные 74 ночей наблюдений, охватившие 75 полных циклов вращения. В течение всего этого периода ВУ Сам находился в низком аккреционном состоянии. Обработка изображений проводилась методом апертурной фотометрии с помощью программы, разработанной В.П. Горанским и программой МахІм DL. При обработке использовалась та же звезда сравнения, что и в работе Павленко (2006). Точность одного измерения блеска колебалась от $0^m.01-0^m.03$ (в максимуме блеска) до $0.^m05$ (в минимуме блеска). Вся сводка наблюдений, вошедших в последующий анализ, представлена в таблице 1.

3 Зависимость О-С от фаз синодического цикла

Для каждой даты наблюдения были построены кривые блеска и для каждой кривой был определен момент максимума основного горба. Эти данные приведены в таблице 2.

Таблица 1. Сводка данных наблюдений ВУ Сат


Юлианская дата	а Телескоп	Фот. система	Юлианская дата	Телескоп	Фот. система
53089	38 см(КрАО)	R	53644	38 см(КрАО)	R
53091	38 см	\mathbf{R}	53647	38 см	\mathbf{R}
53096	38 см	\mathbf{R}	53648	38 см	\mathbf{R}
53097	38 см	\mathbf{R}	53649	38 см	${ m R}$
53098	38 см	\mathbf{R}	53650	38 см	\mathbf{R}
53099	38 см	\mathbf{R}	53651	38 см	\mathbf{R}
53100	38 см	\mathbf{R}	53652	38 см	\mathbf{R}
53103	38 см	\mathbf{R}	53653	38 см	${ m R}$
53105	38 см	\mathbf{R}	53654	38 см	${ m R}$
53317	38 см	\mathbf{R}	53657	38 см	${ m R}$
53318	38 см	\mathbf{R}	53701	60 см(Терскол)	\mathbf{R}
53319	38 см	\mathbf{R}	53703	60 см	\mathbf{R}
53320	38 см	\mathbf{R}	53705	60 см	\mathbf{R}
53321	38 см	\mathbf{R}	53788	2 м (Терскол)	${ m R}$
53331	38 см	\mathbf{R}	53789	2 м	\mathbf{R}
53332	38 см	\mathbf{R}	53975	60 см	${ m R}$
53341	38 см	\mathbf{R}	54058	2,6 м (КрАО)	BVR
53344	38 см	\mathbf{R}	54060	2,6 м	BVR
53355	38 см	\mathbf{R}	54073	38 см	${ m R}$
53357	38 см	\mathbf{R}	54074	38 см	${ m R}$
53358	38 см	\mathbf{R}	54075	38 см	${ m R}$
53366	38 см	\mathbf{R}	54076	38 см	${ m R}$
53367	38 см	${ m R}$	54077	38 см	${ m R}$
53380	38 см	\mathbf{R}	54078	38 см	${ m R}$
53384	38 см	\mathbf{R}	54079	38 см	${ m R}$
53406	38 см	${ m R}$	54080	38 см	${ m R}$
53408	38 см	${ m R}$	54081	60 см	${ m R}$
53409	38 см	${ m R}$	54082	60 см	${ m R}$
53410	38 см	${ m R}$	54083	60 см	${ m R}$
53411	38 см	\mathbf{R}	54085	60 см	${ m R}$
53412	38 см	\mathbf{R}	54086	60 см	${ m R}$
53425	38 см	\mathbf{R}	54088	60 см	${ m R}$
53486	38 см	\mathbf{R}	54118	38 см	VR
53513	38 см	\mathbf{R}	54119	38 см	VR
53514	38 см	\mathbf{R}	54180	1 м (Симеиз)	BVRI
53520	38 см	\mathbf{R}	54181	60 см	${ m R}$
53522	38 см	\mathbf{R}			
53643	38 см	VR			

По ним была построена зависимость O–C основного горба от фазы синодического цикла. Вычисления O–C делались с использованием эфемериды, приведенной Павленко и др. (2006). Эта зависимость приведена на рис. 1

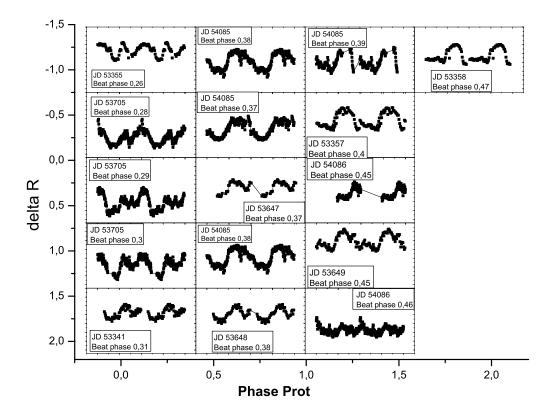

Из графика следует, что в зависимости от фазы синодического цикла ход О–С меняется, и можно выделить четыре зависимости. Переход от одной зависимости к другой сопровождается скачками, как было предположено в ранних работах (Павленко и др., 2007). Именно на этих фазах происходит переключение аккреционной струи с одной аккреционной области на другую или (так как аккреция в полярах идет преимущественно на полюса) с одного полюса магнитного поля на другой. Такие скачки происходят на фазах 0.25, 0.5, 0.75.

Таблица 2. Моменты максиму мов основного горба

Юлианская дата(О)	Юлианская дата(О)	Юлианская дата(О)	Юлианская дата (О)
53089.305	53332.540	53410.292	53653.411
53091.232	53341.412	53411.252	53654.480
53098.323	53344.609	53412.211	53703.301
53099.293	53355.312	53412.351	53705.390
53100.264	53357.332	53513.416	53705.530
53103.398	53358.307	53514.360	53788.320
53105.319	53366.281	53522.462	53788.461
53317.448	53367.212	53643.524	53788.601
53318.421	53380.38	53644.484	53789.291
53319.465	53384.248	53647.465	53789.435
53320.433	53406.327	53648.450	53789.57
53321.541	53408.344	53649.411	
53331.431	53409.311	53652.446	

Рис. 2. Наиболее характерные профили кривых блеска для промежутка фаз синодического периода 0.0--0.25

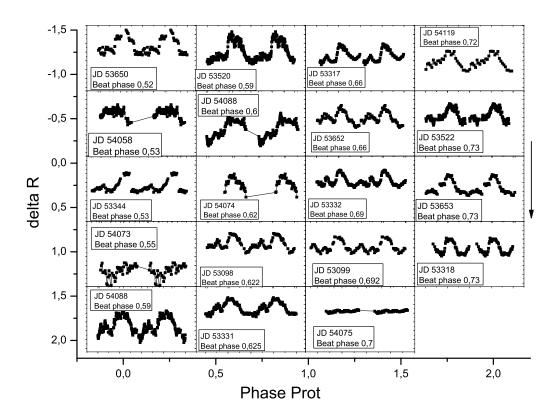


Рис. 3. Наиболее характерные профили кривых блеска для промежутка фаз синодического периода 0.26–0.5

4 Зависимость кривых блеска ВУ Сат от фаз периода биения

Основываясь на полученных результатах O-C, все кривые блеска были рассортированы на четыре группы по промежуткам фаз синодического цикла P_{beat} : 1) фазы 0.0–0.25; 2) фазы 0.26–0.5; 3) фазы 0.51–0.75; 4) фазы 0.76–1. При отдельном рассмотрении каждой кривой блеска от ночи к ночи поражает большое разнообразие их форм и амплитуды. Ранее (Павленко, 2006) уже было показано, что форма профиля на некоторых фазах синодического цикла воспроизводится от одного цикла к другому. В данной работе представлены кривые блеска ВҮ Сат на всех фазах синодического цикла, и если кривые рассположить по мере возрастания фазы периода биения, то сразу становится заметно, что на каждом интервале они ведут себя не хаотически, а определенным образом, и характер их поведения через половину периода биений повторяется, что указывает на видимую симметрию магнитного поля белого карлика по отношению к красному карлику и режимов аккреции. На рис. 2 представлены все кривые блеска для первого интервала фаз синодического цикла 0.0–0.25.

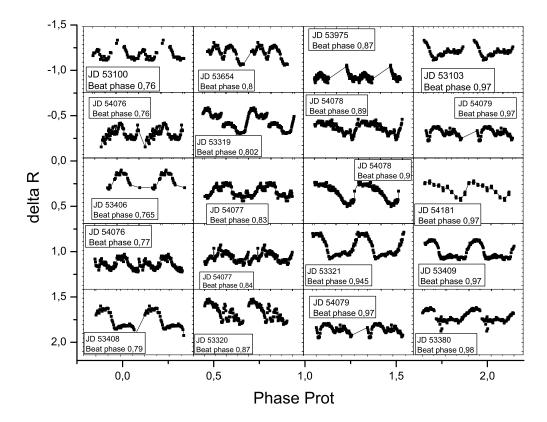

Все кривые блеска для первого и последующих промежутков фаз были построены согласно элементам: $JD_{helmax}=2453089,247+0,1384274*E$ (Павленко и др., 2006). В начале первого промежутка фаз периода биения (0.0-0.25) наблюдается двугорбый профиль кривой блеска, где каждый горб длится по полпериода, и один из них всегда четко выраженный и большей амплитуды, а второй горб часто сливается с восходящей ветвью главного горба или, если ассоциировать каждый горб с аккреционной областью на белом карлике, то можно сказать, что в начале этого промежутка мы видим две аккреционные области и аккреционная струя идет преимущественно на одну область.

Рис. 4. Наиболее характерные профили кривых блеска для промежутка фаз синодического периода 0.51--0.75

На этом же промежутке на фазе 0.17 синодического цикла наблюдается трехгорбый профиль фазовой диаграммы, где один горб длится полпериода и имеет амплитуду в два раза большую, чем два других горба, а остальную половину периода занимают два горба одинаковой амплитуды и продолжительности (рис. 1).

Второй интервал фаз (0.26—0.5) начинается после скачка О—С на полпериода в соответствии с диаграммой (рис. 1). Второй интервал по фазам периода биения изображен на рис. 3. В начале этого промежутка фаз наблюдаем двугорбый профиль кривой блеска, где два горба одинаковой амплитуды и разной продолжительности — один горб продолжительностью 0.25 периода вращения, а второй — 0.75. Такая кривая блеска наблюдается, например, на фазе периода биения 0.26. Дальше двугорбая кривая переходит в кривую, где выделяется один продолжительный горб на полпериода и остальную половину периода занимает слабо выраженный один горб с очень маленькой амплитудой (рис. 3). Например, такой характер кривой блеска наблюдается хорошо на фазе 0.47 синодического цикла. Кривые блеска на третьем и четвертом интервале фаз 0.51—0.75 и 0.76—1 периода биения имеют тот же самый вид, что на первом и втором интервале соответственно. То есть через половину синодического цикла характер аккреции на белый карлик повторяется, и если аккреционные области ассоциируются с магнитными полюсами, то и ориентация магнитного поля белого карлика по отношению к красному карлику повторяется. Помимо наиболее характерных профилей кривых блеска на третьем интервале фаз синодического цикла 0.51—0.75, как и на первом

Рис. 5. Наиболее характерные профили кривых блеска для промежутка фаз синодического периода 0.76-1

промежутке 0.0–0.25, наблюдается трехгорбый профиль кривых блеска на фазах 0.69, 0.692. Набор кривых блеска, которые попадают в эти промежутки фаз, изображены на рис. 4 и 5.

5 Заключение

На основании большого объема наблюдательного материала удалось показать, что вид кривых блеска, а значит и характер аккреции на белый карлик изменяется не хаотически от цикла к циклу, а зависит от фаз синодического периода. То есть по полученным результатам можно видеть, что картина аккреции, а отсюда и ориентация аккреционных областей по отношению к красному карлику, повторяется через половину синодического цикла. Если предполагать, что каждая аккреционная область соответствует магнитному полюсу на белом карлике, то можно говорить и о повторении ориентации магнитного поля по отношению к красному карлику.

6 Благодарности

Работа выполнялась при частичной поддержке грантом Φ 25.2/139 Фонда Фундаментальных Исследований Украины.

Литература

Мэйсон П.А., Либерт Дж., Шмидт Г.Д. (Mason P.A., Liebert J., Schmidt G.D.) // Astrophys J. 1989. V. 346. P. 941.

Мэйсон П.А. (Mason P.A.) // PhD Thesis. Case Western Reserve Univ. 1996.

Павленко Е.П.// Астрофизика. 2006. Т. 49. С. 121.

Павленко Е.П., Андреев М., Бабина Ю. (Pavlenko E.P., Andreev M., Babina Yu.) // Proc. of the 7^{th} Pacific Rim Conference on Stellar Astrophysics. ASP Conf. Ser. 2006. P. 183.

Павленко Е.П., Бабина Ю., Андреев М. (Pavlenko E.P., Babina Yu., Andreev M.) // Proc. of the 15th European white dwarf workshop Conf. Ser. 2007. V. 372. P. 537.

Уорнер Б. (Warner B.) // Cataclysmic Variable Stars. Cambridge University Press. 1995.