Изв. Крымской Астрофиз. Обс. 104, № 4, 249-253 (2008)

УДК 520.4

Модифицированный компенсационный метод Максутова для контроля астрономических асферических зеркал

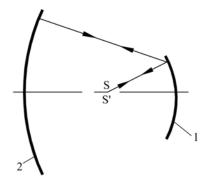
Г.М. Попов, Я.Н. Черных

НИИ "Крымская астрофизическая обсерватория", 98409, Украина, Крым, Научный

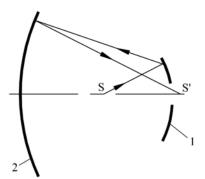
Поступила в редакцию 26 февраля 2008 г.

Аннотация. Предложен модифицированный метод Максутова для контроля вогнутых асферических зеркал, использующий однократное отражение от контрольного вогнутого сферического зеркала. Метод не имеет недостатков оригинального метода Максутова и предпочтителен для высокоточного контроля зеркал с применением громоздкой контрольной аппаратуры.

ADVANCED NULL MAKSUTOV TEST, by G.M. Popov, Ya.N. Chernykh. Advanced Maksutov mirror test is proposed. The test uses only single reflection from a reference concave spherical mirror. The test has no shortcomings of the original Maksutov test, and therefore it is preferable for exact optical aspherical concave mirrors testing.


Ключевые слова: контроль, оптический, асферические зеркала

1 Введение


Как известно, классический компенсационный метод Максутова (Труды ГОИ, 1932; Максутов, 1948) для контроля вогнутых поверхностей второго порядка использует вогнутое точное сферическое контрольное зеркало 1, работающее в автоколлимации с испытуемым асферическим вогнутым зеркалом 2 (рис. 1).

Достоинствами метода являются:

- 1) простая в изготовлении и контроле вогнутая сферическая форма поверхности;
- 2) однократное отражение света от испытуемого зеркала;
- 3) диаметр контрольного зеркала обычно существенно меньше диаметра испытуемого зеркала. Недостатками метода являются:
- 1) труднодоступное положение источника света и светоприемника в пространстве между зеркалами, что вынуждает применять малое плоское зеркало, отбрасывающее световой пучок в сторону; плоское зеркало вносит значительное экранирование и свои аберрации, обусловленные ошибками изготовления плоской поверхности;
- 2) световой пучок дважды отражается от контрольного сферического зеркала, что приводит к удвоению влияния его ошибок, обусловленных несовершенной разгрузкой и изготовлением; плоское зеркало усугубляет этот эффект;
- 3) большая угловая апертура схемы ухудшает чувствительность теневого метода и метода Ронки, применяемых при контроле.

Рис. 1. Вогнутое точное сферическое контрольное зеркало 1, работающее в автоколлимации с испытуемым асферическим вогнутым зеркалом 2

Рис. 2. Вогнутое сферическе контрольное зеркало 1 с малым отверстием в центре и вогнутое испытуемое асферическое зеркало 2

Мы предлагаем модифицировать метод Максутова, используя схему, изображенную на рис. 2. Схема по-прежнему состоит из вогнутого сферического контрольного зеркала 1 с малым отверстием в центре и вогнутого испытуемого асферического зеркала 2 (рис. 2). Наша схема имеет упомянутые выше достоинства 1), 2), 3) метода Максутова, но не имеет его недостатков, за исключением положения источника света в пространстве между зеркалами, что не является критичным, поскольку источником может служить, например, подсвеченный зеркальный шарик в точке S. Плоское зеркало здесь не нужно, а изображение легко доступно, поскольку находится оно в точке S' за пределами схемы. Кроме того, световой пучок отражается от контрольного зеркала один раз, что вдвое уменьшает влияние его ошибок. Влияние тепловых помех от аппаратуры и наблюдателя, расположенных вблизи точки S', на световые пучки может быть сведено к минимуму.

2 Методы расчета

Расчет схемы контроля сводится к предварительному вычислению ее параметров и последующего уточнения параметров на персональном компьютере с помощью специальной оптической программы. Предварительный расчет удобно производить в обратном ходе лучей (рис. 3).

На рис. 3: M_1 – испытуемое зеркало, M_2 – вспомогательное сферическое зеркало; d – расстояние между зеркалами, s_1 – расстояние точечного источника света от испытуемого зеркала M_1 ; s' – расстояние изображения B от вспомогательного зеркала M_2 ; α_1 , α_2 , α_3 – параксиальные углы луча с оптической осью; h_1 и h_2 – полудиаметры испытуемого и вспомогательного зеркал соответственно.

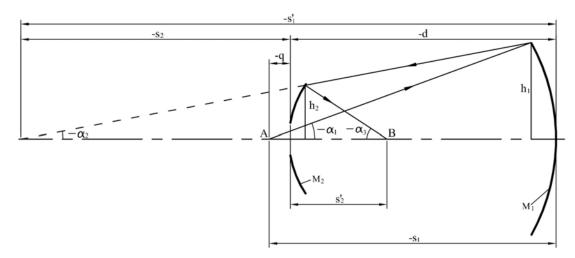
Будем исходить из известных инвариантов Аббе для одиночной поверхности, принимающих для зеркал вид:

$$\frac{1}{s'} + \frac{1}{s} = \frac{2}{r} \,, \tag{1}$$

$$\alpha' + \alpha = 2h/r \tag{2}$$

где s — расстояние точки предмета от вершины поверхности,

s' – расстояние точки изображения от ее вершины,


r – радиус кривизны поверхности при вершине,

 α и α' – углы падающего на поверхность и отраженного лучей с оптической осью,

h – высота пересечения луча с поверхностью.

Применяя выражения (1) и (2) к поверхности схемы (рис. 3) поочередно, находим:

$$\alpha_1 = \frac{h_1}{s'}, \ \alpha_2 = \alpha_1', \ q = s_1 - d,$$
 (3)

Рис. 3. M_1 – испытуемое зеркало, M_2 – вспомогательное сферическое зеркало; d – расстояние между зеркалами, s_1 – расстояние точечного источника света от испытуемого зеркала M_1 ; s' – расстояние изображения B от вспомогательного зеркала M_2 ; α_1 , α_2 , α_3 – параксиальные углы луча с оптической осью; h_1 и h_2 – полудиаметры испытуемого и вспомогательного зеркал соответственно

$$\alpha_2 = \frac{2h_1}{r_1} - \alpha_1,\tag{4}$$

$$\frac{1}{s_1'} = \frac{2}{r_1} - \frac{1}{s_1} \,\,\,(5)$$

$$s_2 = s_1' - d$$
, (6)

$$h_2 = h_1 - \alpha_2 d \tag{7}$$

$$\frac{1}{s_2'} = \frac{2}{r_2} - \frac{1}{s_2} \,, \tag{8}$$

$$\alpha_3 = \frac{2h_2}{r_2} - \alpha_2. \tag{9}$$

Радиус отверстия h во вспомогательном сферическом зеркале

$$h = \alpha_1 q \tag{10}$$

где q — расстояние точки A от поверхности сферического зеркала (рис. 3).

Заметим, что выражения (1)–(10) могут применяться только для габаритного, но не для аберрационного расчета. Используя выражения (3)–(10) по заданным h_1 , s_1 , d, r_1 , r_2 , находим h_2 , s_1' , s_2 , s_2' , q, α_3 (рис. 3). Некоторые из этих параметров обычно являются предварительными и их уточняют на ПЭВМ, добиваясь минимальной сферической аберрации на оси для заданного квадрата эксцентриситета e_1^2 испытуемого зеркала, т. е. оптимизируют схему. Для этой цели применяют специальные оптические программы, например ZEMAX или OSLO. Заметим, что для улучшения сходимости процесса итераций при оптимизации, последнюю целесообразно выполнять в несколько этапов: на первом этапе ограничиваются минимальным количеством уточняемых параметров, а апертурное отверстие уменьшают по крайней мере в $3 \div 10$ раз с тем, чтобы уменьшить влияние аберраций высших порядков и увеличить радиус сходимости, т. е. размеры области изменения параметров, в

которой достигается устойчивая сходимость процесса итераций и получение исправленной системы в первом приближении. На втором и последующих этапах увеличивают количество уточняемых параметров и величину апертурного отверстия до необходимой величины, используя уточненные в первом приближении параметры, по возможности получая систему с требуемыми характеристиками. При этом обычно удается избежать традиционного вычисления аберраций третьего и более высоких порядков, находя первоначальное решение в первом приближении методом случайного поиска, либо выбрав систему из табл. 1, при необходимости изменив ее масштаб. Подробнее об этом будет сказано ниже.

Многочисленные расчеты различных вариантов схемы, представленной на рис. 2 или рис. 3, показали, что возможен высокоточный контроль как малых, так и больших зеркал диаметром до трех и более метров, причем диаметр контрольного зеркала обычно остается умеренным. Исключением является контроль зеркал высокой светосилы с относительным отверстием порядка 1:2, где диаметр контрольного зеркала значительно возрастает, приближаясь к диаметру испытуемого зеркала. Для иллюстрации возможностей метода в таблице 1 даны результаты расчетов ряда вариантов параболических астрономических зеркал, имеющих дифракционное качество для $\lambda = 0.63$ мкм (рис. 3).

Таблица 1. Контрол	ь параболических	зеркал с помощью	молифинированного	метода Максутова	(DMC 3)
таолицат, коптрол	в нараболических	зеркал с помощью	модифицированного	метода максутова	(PMC, 3)

№	r_1 , мм	r_2 , MM	s_1 , MM	d, mm	s_2' , mm	$2h_1 = D_1$, mm	$2h_2 = D_2$, mm	A	rms, λ
1	-2000.00	2165.02	-1300.00	-1100.00	811.047	497.20	376.2	2.0	0.070
2	-2800.00	1494.87	-2241.20	-2097.11	512.788	557.1	249.5	2.5	0.071
3	-3200.00	3944.14	-1920.00	-1760.00	1575.78	780.70	644.0	$^{2.0}$	0.0700
4	-3600.00	3713.57	-2340.00	-2160.00	1396.97	804.8	583.0	2.24	0.070
5	-5000.00	276.540	-4815.00	-4750.00	105.797	667.8	61.0	3.74	0.070
6	-10000.0	900.661	-9500.00	-9250.00	334.883	1238.6	158.3	4.04	0.062
7	-14000.0	2880.00	-12600.0	-12242.5	1020.95	1833.8	416.9	3.82	0.070
8	-20000.0	2864.80	-18500.0	-18000.0	1037.67	2252.5	397.3	4.45	0.056
9	-20000.0	14670.0	-14762.839	-13573.5	5161.88	2640.0	1494.50	4.0	0.030
10	-20000.0	14673.0	-14762.81	-13600.5	5160.3	2987.6	1691.96	3.3	0.063
11	-20000.0	12000.0	-15500.02	-14554.1	4165.92	2642.5	1294.5	3.78	0.045
12	-20000.0	6827.48	-17000.0	-16500.0	2373.27	2600.3	845.31	3.82	0.060
13	-20000.0	5416.48	-17500.0	-17000.0	1897.12	2558.5	705.69	3.90	0.066
14	-20000.0	4101.93	-18000.0	-17500.0	1454.48	2624.86	595.5	3.8	0.095

В таблице 1 даны: порядковый номер варианта схемы, радиусы кривизны при вершинах поверхностей зеркал (испытуемого r_1 и контрольного r_2), расстояние точечного источника света s_2' от вершины контрольного зеркала, расстояние между вершинами зеркал d, расстояние s_1 изображения от вершины испытуемого зеркала, световые диаметры зеркал D_1 (испытуемое зеркало) и D_2 (контрольное зеркало), относительный фокус испытуемого зеркала $\forall = f'/D_1$, среднеквадратичная волновая аберрация схемы rms для длины волны света $\lambda = 0.6328$ мкм в длинах волн λ . Как известно, согласно критерию Марешаля (1964) изображение является дифракционным, если $rms < \lambda/14$; поэтому почти все варианты, приведенные в таблице, имеют дифракционное качество для $\lambda = 0.6328$ мкм. Исключением является вариант № 14, среднеквадратичная аберрация rms которого превышает условие Марешаля. Диаметр контрольного зеркала D_2 обычно существенно меньше диаметра испытуемого зеркала D_1 , что очевидно из таблицы. Заметим, что геометрические параметры любой схемы из таблицы можно умножать на специально выбранное число M, изменяя тем самым масштаб схемы и ее аберрации. В качестве примера рассмотрим схему № 14 из табл. 1; она имеет среднеквадратичную волновую аберрацию $rms = 0.095\lambda$ ($\lambda = 0.6328$) мкм, что превышает допуск Марешаля $\lambda/14 = 0.0713\lambda$. Очевидно, для того, чтобы эта схема удовлетворяла допуску, следует изменить ее масштаб, умножив ее геометрические параметры на $M \leq \frac{0.0713}{0.095} \cong 0.75$, где M — масштабный коэффициент. Получим, приняв M=0.75 (размеры в мм): $r_1=-15000.0$; $r_2=3076.448$; $s_1=-13500.0$; $s_2'=1090.86$; d=-13125.0; $2h_1=1968.7$; $2h_2=446.84$; $\forall=3.8$; $rms=0.0713\lambda$. Описанную процедуру ("масштабирование") возможно применить к любой системе из табл. 1, например, с целью получения исходной системы при оптимизации. Нашу схему возможно применить для контроля нового главного зеркала телескопа ЗТШ ($D_1=2600$; $r_1\cong-19904$; $e_1^2=1$) из ситалла взамен прежнего зеркала из стекла типа "пирекс".

Приведем пример одного из вариантов контрольной схемы (рис. 3), предназначенной для контроля параболического главного зеркала телескопа имени Шайна (ЗТШ) $D_1=2600$ мм, $e_1^2=1$, $r_1=-19904$ мм, здесь r_1 – радиус кривизны при вершине параболического зеркала. В качестве контрольного вогнутого сферического зеркала было выбрано имевшееся в наличии высокоточное зеркало, служившее для контроля плоских зеркал в схеме Коммона и имеющее световой диаметр 1050 мм и радиус кривизны 8775 мм. Интерферограммы зеркала показали, что его ошибка не превышает $\lambda/20$, $rms=\lambda/60=0.0166\lambda$ ($\lambda=0.6328$ мкм), т. е. зеркало можно считать идеальным для контроля зеркала наземного телескопа в схеме, изображенной на рис. 3. Расчет на персональном компьютере с помощью программы ZEMAX-EE после нескольких попыток привел к схеме с параметрами (ошибками контрольного зеркала пренебрегаем, т. е. считаем зеркало идеальным): $r_1=-19904$ мм, $s_1=-16204.69$, $D_1=2596$ мм, $r_2=8775$ мм, d=-15824.2 мм, $D_2=1015$ мм, $s_2'=-3046.592$ мм, $rms=0.048\lambda$. Очевидно, что остаточные аберрации схемы весьма малы ($rms=0.048\lambda$) и существенно меньше допуска Марешаля ($\lambda/14=0.071\lambda$) даже с учетом ошибок контрольного зеркала.

Заметим, что предложенный нами метод контроля может быть применен также и для тестирования вогнутых гиперболических или эллиптических зеркал, например, применяемых в системах Ричи-Кретьена или Далла-Киркхема (Михельсон, 1976). При расчете схем контроля для подобных зеркал в качестве исходного варианта целесообразно выбрать подходящую схему из табл. 1, изменив, при необходимости, ее масштаб и принять требуемую величину квадрата эксцентриситета e_1^2 испытуемого зеркала. Обычно при этом нет необходимости изменять радиус кривизны сферического контрольного зеркала. В качестве примера преобразуем вышеприведенную схему контроля зеркала телескопа ЗТШ, имеющего параболическую форму $(r_1=-19904~{\rm Mm},\,e_1^2=1)$, в схему контроля гиперболического зеркала с параметрами $r_1=-19904~{\rm mm},\,e_1^2=1.14,\,D_1=2577~{\rm mm}$; при этом сферическое контрольное зеркало оставим прежним $(r_2=8775~{\rm mm},\,e_2^2=0)$: $r_1=-19904~{\rm mm},\,e_1^2=1.14,\,s_1=-16194.72~{\rm mm},\,r_2=8775~{\rm mm},\,d=-15376.0~{\rm mm},\,s_2'=3089.4~{\rm mm},\,D_1=2577~{\rm mm},\,D_2=1055~{\rm mm},\,r_2=870.064\lambda$.

В качестве уточняемых параметров использовались s_1 , d, s_2' (рис. 3). Остаточная среднеквадратичная аберрация rms на оси удовлетворяет допуску Марешаля $\lambda/14$, $\lambda=0.6328$ мкм.

В качестве второго примера рассмотрим контроль эллиптического зеркала $(r_1=-19904~{\rm MM},\ e_1^2=0.9,\ D_1=2592~{\rm MM});$ сферическое контрольное зеркало оставим прежним $(r_2=8775~{\rm MM},\ e_2^2=0)$: $r_1=-19904~{\rm MM},\ e_1^2=0.9,\ s_1=-16697.79~{\rm MM},\ r_2=8775~{\rm MM},\ d=-15527.63~{\rm MM},\ s_2'=2961.99~{\rm MM},\ D_1=2593.4~{\rm MM},\ D_2=969.2~{\rm MM},\ rms=0.042\lambda.$ Характерно, что остаточные аберрации rms-схемы для контроля эллиптического зеркала меньше, нежели для параболического и гиперболического зеркал, а световой диаметр D_2 контрольного зеркала меньше.

Автор признателен В.И. Пронику за просмотр рукописи и ценные указания.

Литература

Максутов Д.Д. // Изготовление и исследование астрономической оптики. Ленинград — Москва: ОГИЗ. Гостехиздат. 1948.

Марешаль А. // Структура оптического изображения: Дифракционная теория и влияние когерентности света. М.: Мир. 1964.

Михельсон Н.Н. // Оптические телескопы. Теория и конструкция. М.: Наука. 1976.

Труды ГОИ. Вып. 86. 1932. С. 94.

Хеч (Hecht J.) // Coherent light sources reach the extreme-ultraviolet. Laser Focus World. 2006. \mathbb{N} . 12. P. 69.