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The south pole observations:

originally,
an experiment to improve the observation
of the 160 min oscillation

A spectrophotometer using the optical
resonance in sodium vapor to measure
the Doppler shift related
to the photospheric velocity field
averaged on the solar disk
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1:First 'bservatio
at the south pole G. Grec, E. Fossat, M. Pomerantz
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The first spectrum showing separately the p modes
from /=0 to / =3
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Fig. 1 Power spectrum of the continuous 5-day full-disk Doppler

shift measurements recorded at the South Pole from 31 December, 1979 to
5 January, 1980. The resolution of the power in 3-mHz range into many
discrete equidistant lines separated by 68 pHz indicates that global p-
modes corresponding at least to / values of 0 and 1 are observed. Note that
the

small peaks around 2.4 mHz represent global oscillations with

an amplitude <10 cm s-1, corresponding to motion of the solar
radius <5 m, or 7x10-6 arc s.
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Fig. 4 The superposed epoch analysis of a data sample extending

over 5 days (45 periods of 160 min). The points represent the South

Pole data, and the solid line is the average based upon the obser-
vations obtained at the Crimean Observatory and Stanford.
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Helioseismology In space

“After the impressive progress resulting
from 7 days of uninterrupted observation
of the Sun made at the south pole,
| was convinced of the strong interest to
have uninterrupted observations from space,
possibly lasting several years*

R.M. Bonnet,
former scientific director of ESA,
(Orsay, 10 y of SOHO meeting)

59



Gérard Grec

SoHO is a solar observatory, on a halo orbit
circling the L1 Lagrange point.

It carries 11 instruments, 3 of those are
dedicated to helioseismology :

- MDI, imaging the photospheric velocity field
with a resolution of 1 mega pixel.
(and imaging the magnetic field)

- GOLF, measuring the photospheric velocity
averaged over the solar disk

- VIRGO, measuring the solar irradiance.
(and low resolution imaging of luminosity)

The initial mission was 3 y.

Today, several additional years of operations
are still foreseen, the helioseismic data will
cover more than a 11 y solar cycle, probably
until the SDO launch.
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GOLF: Helioseismology aboard SoHO. Launch,
December 1995
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The Sun observed as a star :
Low degree resonant modes

: I=1 m=0 I=1 m=+1
Propagation of an degree I, tesseral order m,
acoustical perturbation radial order n
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Pressure modes / gravity modes
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Densite spectrale des oscillations photospheriques
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a solar spectrum calculated from several years of GOLF data
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The frequency of the low degree modes follow a periodical law, depending on the
radial order n and on the degree [, (Tassoul, 1980).

[ L(I+1)49
vy=Mn+-+e6)y - —— A
= 2 Ju n+l/2+c
where
-1
Re dr
=127 —)
! (/0 c
is proportional to (ly
5

Rg being the solar radius, 1/vy is the time needed to an acoustical perturbation to
cross the solar sphere.

At the first order a p-mode frequency is

Vpi=(n+ 5 +¢) 1

e, A, 0, ¢ depends on the physics of the whole solar sphere and can be calculated
from a solar model, involving the evolution and the chemical composition.
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That is the first step of the successful
analysis,

but...

The “numerical Sun” is not the
real Sun.

The Sun is a variable star,
the Sun is a magnetic star...
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All analytic calculations made from
the data coming from p-mode
observations are not able to include
the magnetic activity.

Next question for observers:

Do the p-mode frequencies change
with the solar activity ?

from a preprint on GOLF data analysis :
M. Lazrek, G. Grec, E. Fossat, C.Renaud
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frequency uHz
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Frequency correction (uHz)
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5000
frequency uHz
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Amplitude of the corrections for the magnetic activity
induced shift, computed for each mode of degree
=0, I=1 and /=2
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Delay (in d) for the best fit of solar activity index to
p mode frequencies. Most p modes vary earlier
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Table 1: Frequency f and his uncertainty o of p modes of degree /
and radial order n, the unit is gHz. (M. Lazrek, G. Grec, E. Fossat,
. Renaud, snbontted to A & A)
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echelle diagram of the GOLF solar spectrum
The horizontal scale is in pHz,
the vertical scale is the radial order n for
degrees /=0 and /=1
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Table 1: Rotationnal splitting s and his uncertainty o of p modes
of degree [ and radial order n, the unit is nHz.

=1 [=2 [=3

n| s o|s o s O
71429 6

8|437 4429 7

91432 6429 5432 7
10 1445 71435 6440 8
11 (428 81435 6431 9
12 1434 11432 8433 9

13 1454 131422 881|431 11
14 | 431 17 1422 14433 11
151448 18 | 417 14434 14
16 | 434 25437 15| 446 11
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18 (426 251|441 14438 12
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Application to the solar modeling :

How does the change of solar
abundances affect the low degree
p-mode frequency spectrum?

From a poster for the meeting SoHO 18

J. Provost, A. Zaatri, G. Berthomieu, P. Morel,
T. Corbard
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Sound speed profile

We compare seismic sound speed

profile with those of the computed models.
The worse concordance between the model
using Asplund et. al abundances (AGS) and the
seismic model is shown by about 15% under the
base of the convection zone. Models M3, M4,
M5 bring an idea of how big the neon
abundance increase have to be in order to
minimize the discrepancy. We have estimated
this increase to 0.4-0.5Dex, which is in
accordance with Bahcall et al 2005.
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Solar _envelope characteristics

Y, and r,. increases and decreases, respectively, as
the neon abundance increases. Nevertheless, none
of these values is in accordance with the seismic
value, even for the 0.4-0.5 augmentation

of the neon abundance. In the aim to

bring closer the values of to those of the seismic
determination, we constructed

the model M6 in which the neon abun-dance is
increased by 0.4dex and the

other revised elements (C,N,O) and meteoritic
determined elements (Si, Mg) are increased until
the limit of their error

bar estimation. We notice that seismic sound
speed, ¥Ys and r,. of the M6 model

IS the closest one to the seismic values.
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p-mode characteristics of the core

AVn,/: nl — Yn-1,/
Oy, = Vi k0 = Vipr2

OVy3 = w1kl — ViE3 .,
OV = 2V/7,/=O - (Vn,/zl * vn—l,/:l)

AV, , =V, —,V, 1,15 almost constant at high
freguency and close to v,

Small frequency spacings dv,,, dv;; and dv,, are
combinations of acoustic modes penetrating
Differently fowards the center and thus very
sensitive to the central part of the solar interior.

In order to compare the models to the observations,
we compute the mean of the frequency small
spacings dv02, dv13 and dvO01 for radial orders

from 16 to 24, which corresponds to a frequency
range about 2500—3600 \muHz. The low limit of
this range insures that the behavior of the
frequency is almost asymptotic, the high limit
corresponds to observed modes with very high
accuracy.
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Can we detect g modes in the
photospheric velocity power
spectrum?

Several difficulties or questions occur:

- the mechanism of excitation.

- g modes are vanishing in the convective zone,
due to the lack of restoring force.

- the predicted frequencies are in the low part of
the spectrum, where the solar noise

increases (this noise being related to convection,
solar activity, or other sources).
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The frequency of solar modes is shifted due to
the rotation, following their geometrical structure
(the degree I and the tesseral order m). Then
multiplets should be observed. That gives a way to
detect a g mode by collapsing the power spectrum
in order to add all possible components of a mode.

Those so-called “collapsogram” are used in the
paper from Appourcheaux et al. for the analysis of
GONG and MDI observations.



Gérard Grec
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The asymptotic distribution of g modes
(practically for radial order n > 30)
should be equally spaced in period,

(p modes are equally spaced in
frequency).

A French-Spanish group claims to detect
such a signature of a periodic pattern

in the periodogram deduced from the PS
of the GOLF data. After comparison with
a numerical model, they suggest the
result obtained from GOLF observations
Is related to / =1 g modes.

“Detection of the periodic signature of
I =1 g modes with 10 years of OLF/SoHO
data”.

Garcia et al. SoHO 17 meeting
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Period (min)

Figure 4. Top: PS of the PSD expressed in period com-
puted from 3481 days of GOLF velocity time series. Bot-
tom: PS of the PSD(P) from theoretical g-modes com-
puted from the seismic model and using a rigid core rota-

tion.
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The temporal analysis of the p-mode
frequency variations, averaged

over short periods.

Can we detect a cross-talk with g-modes?

preprint on GOLF data analysis :
G. Grec, C.Renaud, E. Fossat

The analysis is made using 10 y of GOLF data,
with a low frequency resolution.

We estimate the variable frequency of the
p-modes as a time function and we

calculate his Fourier transform.

Are those frequencies modulated by
G-modes?
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Search for an evidence of a cross-talk with
g-modes :

- to translate the PS from a frequency
scale to a time scale;

- to make a FT, in order to detect a regular
pattern in period.

For g-modes of degree / >1, we should be in
asymptotic frequency range.
For degree I =1 the spacing should be about
23 min, or 700uHz, decreasing with
the radial order n we have from a model
for modes close to 80 nHz

| =2 AT=796s, 1255uHz

| =3 AT=578s, 1728uHz (J. Provost)
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Den. Spe. (O&val) (impairs,>18.0H,coefsigma=3.0,nbp=gauss)
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conclusion, for today :

real result on g-mode detection...

...or computer jokes?

98



