Изв.Крымской Астрофиз.Обс. 101, 38-44 (2005)

УДК 524.7

О вариациях излучения в диапазонах кэВ/ТэВ энергий от галактики 1ES 2344+514 в 2002 году

В.В. Фиделис

НИИ "Крымская астрофизическая обсерватория", 98409, Украина, Крым, Научный

Поступила в редакцию 20 августа 2004 г.

Аннотация.

В 2002 году в НИИ "Крымская астрофизическая обсерватория" на черенковском телескопе ГТ-48 были проведены наблюдения галактики 1ES 2344+514. Анализ данных наблюдений показал избыток гамма-квантов сверхвысоких энергий в направлении наблюдаемого объекта со статистической достоверностью 5.5 σ .

Оценка потока, полученная путем сравнения скоростей счета гамма-квантов от 1ES 2344+514 и Крабовидной туманности при тех же значения параметров отбора, находится в пределах (1.6 \pm 0.7) Crab (E \geq 1 TeV). Поток от объекта имел тенденцию к уменьшению от сентября к декабрю. Эта зависимость также наблюдается в диапазоне энергий 2 – 10 кэВ по данным регистрации детектором ASM/RXTE.

ON THE VARIATIONS OF EMISSION IN THE keV/TeV ENERGY BANDS FROM THE GALAXY 1ES 2344+514 IN 2002, by V.V. Fidelis. Galaxy 1ES 2344+514 was observed at the Scientific Research Institute "Crimean Astrophysical Observatory" with the aid of Cerenkov telescope GT-48 in 2002. The analysis held indicated a 5.5 σ excess of very high energy gamma-quanta in the direction of observed object.

The flux estimated by comparison of γ -rates from 1ES 2344+514 and Crab Nebula fitted the same selection criteria is in limits of (1.6 ± 0.7) Crab (E \geq 1 TeV). The flux from object had the tendency for decreasing from September to December. This tendency is also seen in the (2 – 10) keV energy band accordingly ASM/RXTE data.

Ключевые слова: активные ядра галактик, объекты BL Lac, 1ES 2344+514

1 Введение

В связи с возросшими детальными наблюдениями ядер активных галактик в оптическом, радио и рентгеновском диапазонах становятся актуальными их наблюдения почти в самом конце высокочастотного электромагнитного спектра –в гамма-диапазоне сверхвысоких энергий (СВЭ). Поскольку атмосфера является оптически непрозрачной для фотонов СВЭ, они могут быть обнаружены наземными детекторами путем регистрации черенковских вспышек от инициируемых ими широких атмосферных ливней (ШАЛ). О вариациях излучения в диапазонах кэВ/ТэВ энергий...

Ливни, образуемые гамма-квантами СВЭ, составляют небольшую долю ливней (доли процента), образуемых ядрами космических лучей, преимущественно протонами. Незначительное отличие характеристик двух видов ливней позволяет отделять гамма-ливни от протонных.

Гамма-излучение CBЭ (E>300 ГэВ) от внегалактических источников впервые было обнаружено на 10-метровом телескопе обсерватории Уиппла от маркаряновских галактик Mrk 421 (z=0.031) (Панч и др., 1992) и Mrk 501 (z=0.033) (Куинн и др., 1996). Обе эти галактики принадлежат к классу объектов BL Lac, составляющих существенную долю блазаров из каталога EGRET (Томпсон и др., 1995).

Галактика 1ES 2344+514 (z=0.044) наряду с галактиками Mrk 421 и Mrk 501 является ближайшим к нам объектом BL Lac. Рентгеновское и радиоизлучение от ее активного ядра примерно в 3 раза меньше, чем от Mrk 421, поток в рентгеновском диапазоне составляет 1.142 Jy (2 кэВ), а поток в радиодиапазоне равен 215.18 mJy (5 ГГц). Магнитуда в оптике вместе с галактической светимостью составляет 15^m5 (Перлман и др., 1996). Излучение гамма-квантов СВЭ от галактики 1ES 2344+514 впервые было зарегистрировано также на 10-метровом черенковском телескопе обсерватории Уиппла во время происшедшей 20 декабря 1995 г. вспышки, в течение которой был зарегистрирован средний поток на уровне ≈ 0.63 Crab (E>350 ГэВ) (Катанезе и др., 1998) со статистической достоверностью 6 σ .

Наблюдения на этом же телескопе с октября 1995 г. по январь 1996 г. показали среднее значение потока (за исключением зарегистрированной вспышки) ≈0.11 Crab (E>350 ГэВ).

В период наблюдений с сентября 1996 г. по январь 1997 г. от объекта не было зарегистрировано излучения гамма-квантов СВЭ. Низкий уровень базового состояния и вариации потока на суточных и годовых шкалах от объекта 1ES 2344+514 аналогичны характеристикам излучения от галактик Mrk 421 и Mrk 501.

Галактика 1ES 2344+514 наблюдается в НИИ КрАО с 2002 г. (Неппор и др., 2003; Фиделис, 2004). В настоящей работе проводится анализ излучения от этого объекта в диапазоне ТэВ-ных энергий и в рентгеновском диапазоне (2 – 10 кэВ) в течение наблюдательного периода 2002 г.

2 Черенковский телескоп

Черенковский телескоп ГТ-48 расположен на высоте 600 м над уровнем моря. Он состоит из 2-х идентичных секций, северной и южной, удаленных друг от друга на 20 метров. Каждая секция оборудована 4 камерами (светоприемниками), расположенными в общем 5-метровом фокусе четырех сферических зеркал с диаметром 1.2 м каждое. Каждая камера состоит из 37 фотоумножителей, которые вместе с коническими световодами образуют 37 ячеек с полем зрения каждой 0°.4. Поле зрения каждой камеры составляет 2°.6.

Сигналы от ячеек четырех светоприемников на каждой секции телескопа линейно складываются и по 37 каналам поступают на преобразователь амплитуда-код. Обе секции телескопа работают в режиме совпадения. Вспышки регистрируются лишь в том случае, если амплитуды сигналов, совпадающих по времени в каких-либо 2 из 37 ячеек светоприемников превышают установленный порог. Разрешающее время схемы совпадений равно 15 нс. Общая площадь составных зеркал на обеих секциям равна 36 м². Пороговая энергия телескопа определялась по методу численного моделирования развития ШАЛ и составляет приблизительно 1 ТэВ (Калекин, 1999). Телескоп подробно описан Владимирским и др. (1994).

3 Наблюдения и анализ данных

Галактика 1ES 2344+514 (координаты на 2002 год: $\alpha = 23^{h}47^{m}17^{s}$ и $\delta = 51^{\circ}42'58''$) наблюдалась в НИИ "Крымская астрофизическая обсерватория" в 2002 году в продолжение 11 безлунных ночей с 15 сентября по 5 декабря. Наблюдения проводились в режиме слежения за объектом с точностью ведения телескопа ±0.05. Сеансы наблюдения объекта длительностью 30 минут (режим ON) сменялись сеансами наблюдением фона такой же длительности (режим OFF) со смещением по прямому

В.В. Фиделис

Рис. 1. Графическое изображение основных параметров изображения вспышки в поле зрения камеры. О – центр распределения яркости изображения вспышки, S – положение источника. Отрезок OS соответствует параметру *DIST*

восхождению α на 35 минут. Наблюдения в этих режимах проводились при одинаковых зенитных расстояниях. Всего было проведено 18 парных сеансов наблюдений, из них 2 сеанса были исключены из дальнейшей обработки ввиду малой скорости счета и ее большой неравномерности на источнике или фоне вследствие плохих погодных условий. Общая продолжительность наблюдений источника оставшихся 16 сеансов составила 8 часов.

Оставшиеся данные наблюдений подвергались первичной обработке, заключающейся в исключении событий, наблюдавшихся при плохом ведении, исключении данных, в которых суммарный сигнал от всех светоприемников хотя бы в одной из 37 ячеек был больше сигнала, приводящего к насыщению преобразователя аналог-код (примерно 150 фотоэлектронов), коррекции амплитуд сигналов в каналах с учетом калибровочных коэффициентов, исключении вспышек с максимальной амплитудой во внешнем кольце ячеек светоприемников.

Отбор черенковских вспышек, инициируемых гамма-квантами СВЭ от вспышек, образуемых космическими лучами, осуществлялся на основе отличий их изображений. Изображения первых имеют более компактную форму и меньшие угловые размеры и ориентированы в поле зрения камеры на источник излучения. Изображения вторых более фрагментированы, имеют незначительно большие угловые размеры и распределены в поле зрения камеры в первом приближении равномерно.

Отбор по форме изображений вспышек осуществлялся с использованием параметра IPR (Imaging Pattern Ratio), характеризующего степень их фрагментации. Ему приписываются значения, равные нулю в случае компактных вспышек и 1...7 более фрагментированным. Параметр IPR для двух секций телескопа может принимать разные значения с целью достижения максимального соотношения сигнал/шум. В данном отборе изображения вспышек на двух секциях телескопа выбирались со значениями параметра IPR=0 (простая вспышка, нет фрагментации изображения) и IPR=1 (неупорядоченная вспышка). Размеры изображений вспышек характеризуются эффективной длиной A и эффективной шириной B. Энергию вспышки характеризует суммарная амплитуда V. На нее также накладываются ограничения, поскольку параметры вспышек с малой энергией определяются с большой опшобкой. Обычно при отборе вспышек минимальное значение амплитуды V не превышает 150 единиц дискрета, что соответствует ~105 фотоэлектронам. Параметры A, B, IPR и V не зависят от координат объекта и называются координатно-независимыми.

Ориентация изображения вспышки в поле зрения камеры относительно направления на объект определяется параметрами *ALPHA*, *MISS*, *AZWIDTH* и *DIST* (Хиллас, 1985). Параметр *ALPHA*, численно равный углу между направлением на источник от центра распределения яркости изоб-

О вариациях излучения в диапазонах кэВ/ТэВ энергий...

Рис. 2. Отбор гамма-подобных вспышек по их параметрам для 1ES 2344+514. Верхние рисунки соответствуют северной секции, нижние – южной. Сплошными линиями указано количество событий при наблюдениях источника, пунктирными – фона. Избранные диапазоны изменений указаны стрелками

ражения вспышки и направлением большой оси эллипса изображения, параметр *DIST*, численно равный угловому расстоянию от центра распределения яркости изображения вспышки до положения источника в фокальной плоскости телескопа и параметры *MISS* и *AZWIDTH*, вычисляемые на их основе являются координатно-зависимыми (см. рис. 1).

Граничные значения параметров отбора подбирались таким образом, чтобы величина эффекта, выраженная в стандартных отклонениях, т.е. величина $Q = (Ns - Nb)/\sqrt{Ns + Nb}$, была максимальна. Здесь обозначено Ns и Nb – количество событий при наблюдениях источника и фона соответственно. Разница $(Ns - Nb)=N_{\gamma}$ интерпретируется как число гамма-квантов, а $\sqrt{Ns + Nb}$ – статистическая ошибка этого числа.

Связь параметров ALPHA, MISS и DIST определяется геометрическим выражением

MISS=*DIST*·sin(*ALPHA*) (см. рис.1). Параметр *AZWIDTH* определяется через эффективные размеры изображения вспышки и ориентационный параметр *ALPHA* как

 $AZWIDTH = \sqrt{A^2 sin^2 (ALPHA) + B^2 cos^2 (ALPHA)}.$

Поскольку параметры ALPHA, MISS и AZWIDTH взаимосвязаны друг с другом, в первом приближении отбор проводился по параметру AZWIDTH < 0.235 совместно с параметром DIST в пренебрежении корреляциями между тремя вышеуказанными параметрами. Диапазоны изменений эффективных размеров изображений вспышек и параметра DIST для двух секций телескопа показаны на рис. 2.

Результаты последовательного отбора сведены в таблицу.

Таблица. Статистика отбора

Методика отбора	Ns	Nb	Ns - Nb	Q
Без отбора	7387	7048	339	2.82
Отбор по координатно-				
независимым параметрам	377	282	95	3.70
Отбор по AZWIDTH	244	137	107	5.48

Рис. 3. Стереоизображение "карты" распределения направлений прихода гамма-квантов. $\Delta \alpha$ – отклонение от источника по прямому восхождению, $\Delta \delta$ – отклонение от источника по склонению (в градусах)

Рис. 4. Изофоты распределения направлений прихода гамма-квантов. Внешняя изофота соответствует 50 событиям, шаг изофот – 12 событий

Из Таблицы видно, что учет ориентации изображений вспышек позволил существенно улучшить отношение сигнал/шум. Зарегистрированный поток соответствует скорости счета гамма-квантов $N_{\gamma} = (0.223 \pm 0.041)$ кв/мин. Определение направления потока гамма-излучения осуществляется на основе метода пробных источников (Акерлоф и др., 1991; Нешпор и др., 1994). Он основан на том, что большие оси изображений гамма-вспышек ориентированы в фокальной плоскости телескопа на источник, а большие оси изображений протонных вспышек распределены приблизительно равномерно по всем направлениям. Используя это отличие, можно получить распределение гамма-квантов полю зрения светоприемника и найти положение истинного источника гамма-квантов. Гистограмма распределения N_{γ} с использованием координатно-зависимых параметров *DIST* и *AZWIDTH* приведена на рис. 3.

На рис. 4 представлены изофоты величины N_{γ} . Отклонения от координат объекта максимума прихода гамма-квантов СВЭ по прямому восхождению и склонению составляют ($\Delta \alpha = -0^{\circ}2, \Delta \delta = 0^{\circ}2$). Точность определения координат объекта по методу пробных источников составляет 0°1.

Для определения потока от наблюдавшегося объекта был рассчитан массив данных наблюдений

О вариациях излучения в диапазонах кэВ/ТэВ энергий...

Рис. 5. Временной ход зарегистрированных фотонов (средние значения за ночь) в диапазоне (2 – 10) кэВ (верхний рисунок) (qick-look results provided by the ASM/RXTE team) и с энергией ≥1 ТэВ (нижний рисунок). На нижнем рисунке штриховой линией отмечена скорость счета гамма-квантов СВЭ от Крабовидной туманности, соответствующая параметрам отбора для 1ES 2344+514. Ошибки приведены статистические

Крабовидной туманности с продолжительностью экспозиции источника 10 час. Применялись те же значения параметров отбора, как и для галактики 1ES 2344+514. Было получено значение скорости счета гамма-квантов (0.143 ± 0.042) кв/мин (отклонения от координат объекта выбирались такие же, как и у 1ES 2344+514). Сопоставление двух скоростей счета дало оценку потока от галактики 1ES 2344+514 за наблюдательный период, равную (1.6 ± 0.7) Crab.

4 Корреляция с излучением в рентгеновском диапазоне

На рис. 5 показаны световые кривые объекта в диапазонах энергий (2 – 10) кэВ и ≥1 ТэВ. Каждая точка на световой кривой в рентгеновском диапазоне представляет среднее значение из 5 – 10 экспозиций объекта, продолжительностью 90 с каждого, в течении суток. Скорость счета детектора ASM указана в количестве событий в секунду. Для сравнения, поток от Крабовидной туманности в этом диапазоне составляет приблизительно 75 событий в секунду. Средняя скорость регистрации событий от объекта 1ES 2344+514 за период с 15 сентября по 4 декабря детектором ASM равна (0.13 ± 0.03) сек⁻¹. Следовательно, в допущении подобия спектров двух рассматриваемых объектов, оценка потока от 1ES 2344+514 в диапазоне (2 – 10) кэВ дает величину порядка (1.7 ± 0.4) mCrab, что составляет (1.1 ± 0.7)·10⁻³ потока в диапазоне CBЭ (E ≥1 ТэВ).

Из рисунка 5 видно наличие квази-синхронных вариаций интенсивности излучения от объекта в двух диапазонах. Так, периоды максимума излучения, зарегистрированные при ТэВ-ных энергиях 9 октября (MJD52556.9) со статистической достоверностью 4 σ и в рентгеновском диапазоне (MJD52556.5 и 52557.4, $\approx 2 \sigma$) сопровождались последующим спадом в двух диапазонах. Проведенные на рис. 5 штриховые линии по методу линейной регрессии показывают переход объекта из относительного высокого состояния в более низкое. Практическое совпадение этих линий по направлению также может служить признаком общности вариаций в двух диапазонах. Рассчитанный коэффициент кросс-корреляции между амплитудами квазисинхронных вариаций вместе с их статистическими ошибками находится в пределах (0.56 ± 0.33).

5 Заключение

Точечный источник излучения гамма-квантов СВЭ может быть идентифицирован с галактикой 1ES 2344+514 со статистической достоверностью $\approx 5.5 \sigma$ и средним значением зарегистрированного потока за период наблюдений в пределах (1.6 ± 0.7) Crab (E \geq 1 ТэВ). Поскольку интенсивности излучения в рентгеновском и ТэВ-ном диапазонах имеют признаки взаимосвязи, то механизмы излучения в этих диапазонах должны быть одно-пространственными. Следовательно, усиление активности в области синхротронного пика излучения лацертид, являющегося индикатором ускорения электронов до ультрарелятивистских энергий (Агаронян и др., 2002), может являться предвестником повышения активности в области инверсного комптоновского излучения.

В заключение автор выражает признательность С.Г. Кочетковой за помощь в оформлении рукописи.

Литература

- Агаронян и др. (Aharonian F.A., Akhperjanian A., Barrio J. et al.) // Astron. Astrophys. 2002. V. 384. L23.
- Акерлоф и др. (Akerlof C.W., Cawley M.F., Chantell M. et al.) // Astrophys. J. (Lett.). 1991. V. 377. L97.
- Владимирский Б.М., Зыскин Ю.Л., Корниенко А.П. и др. // Изв. Крымск. Астрофиз. Обсерв. 1994. Т. 91. С. 74.
- Калекин О.Р. // Изв. Крымск. Астрофиз. Обсерв. 1999. Т. 95. С. 167.

Катанезе и др. (Catanese M., Akerlof C.W., Badran H.M. et al.) // Astrophys.J. 1998. V. 501. P. 616. Куинн и др. (Quinn J., Akerlof C.W., Biller S. et al.) // Astrophys.J. 1996. V. 456. L83.

- Нешпор и др. (Neshpor Yu.I., Kornienko A.P., Stepanian A.A. et al.) // Experim. Astron. 1994. V. 5. P. 405.
- Нешпор Ю.И., Елисеев В.С., Жоголев Н.А. и др. // Изв. Крымск. Астрофиз. обсерв. 2003. Т. 99. С. 60.

Панч и др. (Punch M., Akerlof C.W., Cawley M.F. et al.) // Nature. 1992. V. 358. P. 477.

- Перлман и др. (Perlman E.S., Stocke J.T., Schachter J.F. et.al.)// Astrophys. J. Suppl.Ser. 1996. V. 104. P. 251.
- Томпсон и др. (Thompson D.J., Bertsch D.L., Dingus B.L. et al.) // Astrophys. J. Suppl.Ser. 1995. V. 101. P. 259.
- Фиделис В.В. Тезисы докладов 28-й Всероссийской конференции по космическим лучам. 2004. М.: МИФИ. С. 111.
- Хиллас (Hillas A.M.) // Proc. 19-th Intern. Cosm. Ray Conf. La Jolla. USA. 1985. V. 3. P. 445.