Изв. Крымской Астрофиз. Обс. 107, № 1, 38–45 (2011)

удк 524.7 Особенности гамма-излучения активных ядер галактик

Ю.И. Нешпор

НИИ "Крымская астрофизическая обсерватория", 98409, Украина, Крым, Научный neshpor@crao.crimea.ua

Поступила в редакцию 26 ноября 2010 г.

Аннотация. Показано, что светимость гамма-излучения активных ядер галактик растет с увеличением расстояния до объекта. Величина поглощения гамма-квантов сверхвысоких энергий значительно меньше значений, публикуемых в литературе. Во время повышенного излучения галактики частицы высоких энергий ускоряются более эффективно.

SOME FEATURES OF GAMMA-RADIATION OF ACTIVE GALAXY NUCLEI, by Yu.I. Neshpor. The gamma-ray luminosity of active galaxy nuclei grows with the increase of distance to the object. The value of absorption of the very high energy gamma-quantum is far less than the values, published in literature. During the increased radiation of the galaxy high energy particles are accelerated more effectively.

Ключевые слова: гамма-излучение, активные ядра галактик

1 Введение

В настоящее время у специалистов по космическим лучам резко возрос интерес к активным ядрам галактик (АЯГ). На спутнике GRO COMPTON обнаружено, что многие источники гамма-квантов высоких энергий (ВЭ; $\gamma > 100$ МэВ) отождествляются с АЯГ (Томпсон и др., 1995). В начале 90-х годов от АЯГ было зарегистрировано гамма-излучение сверхвысоких энергий (CBЭ; $E > 10^{11}$ эВ) на наземных детекторах - гамма-телескопах второго поколения. К настоящему времени зарегистрировано более 20 объектов АЯГ, излучающих гамма-кванты СВЭ (Хормс, 2008; Викс, 2008). Нестационарность ядер галактик проявляется в генерации мощного гамма-, рентгеновского УФ, ИК и радиоизлучения в выбросах облаков радиоизлучающей плазмы, в ускорении газовых облаков. И следовательно, они являются наиболее перспективными объектами для построения моделей генерации космических лучей. Диапазон от радио-, до гамма-излучения ВЭ при своем распространении от источника до наблюдателя не поглощается и регистрируется в своем первоначальном виде. Что же касается гамма-излучения СВЭ, то оно при распространении от источника до наблюдателя поглощается. Поток гамма-квантов СВЭ при своем распространении взаимодействует с межгалактическими инфракрасными фотонами. Несмотря на малость сечения взаимодействия фотон-фотон с образованием электронно-позитронной пары для огромных расстояний, на которых находятся от нас галактики, этот процесс может играть существенную роль в изменении начального спектра гамма-квантов и влиять на результаты обнаружения потока гамма-квантов СВЭ. Ранее отмечалось, что гамма-кванты CBЭ можно наблюдать только от объектов, находящихся на расстоянии с z < 0.1

(Стекер и др., 1996). Однако в последнее время обнаружены потоки гамма-квантов СВЭ от более удаленных объектов. Так, в НИИ "КрАО" впервые зарегистрирован поток гамма-квантов СВЭ от галактики 3С 66A с z = 0.444 (Степанян и др., 2002). Коллаборация МАGIC обнаружила гамма-излучение СВЭ > 100 ГэВ от квазара 3С 279 (z = 0.536) (Тепима, 2008; Алберт и др., 2008). Таким образом, вопрос о величине поглощения гамма-квантов СВЭ, как нам кажется, является открытым.

2 Источники гамма-излучения СВЭ

Наблюдения гамма-излучения СВЭ на гамма-телескопах второго поколения проводятся в различных точках земного шара. Таких телескопов во всем мире более десяти. Установлены они как в Южном, так и в Северном полушариях, один из них – в Крымской астрофизической обсерватории (KpAO). В результате наблюдений на наземных гамма-телескопах к настоящему времени обнаружено уже несколько десятков галактических и внегалактических объектов, излучающих гамма-кванты СВЭ, часть из них представлена в таблице 1.

Имя	Тип	Ζ	Lg(d)	Lg(L1)	Lg(L2)	alpha	Lg(L3)	Lg(L4)
M87	HBL	0.0044	1.71	41.8	41.8	2.60 ± 0.4	41.1	41.1
Mk 421	HBL	0.030	2.20	45.0	45.0	3.00 ± 0.2	44.8	44.9
Mk 501	HBL	0.034	2.23	44.5	44.5	2.45 ± 0.07	44.3	44.4
1ES2344 + 514	HBL	0.044	2.32	44.0	44.1	2.90 ± 0.2	43.9	44.0
Mk 180	HBL	0.045	2.33	44.1	44.2	3.30 ± 0.7	44.0	44.1
1ES1959 + 650	HBL	0.047	2.35	44.3	44.4	2.70 ± 0.1	44.2	44.3
PKS0548–323	HBL	0.069	2.49	43.6	43.8	2.80 ± 0.3	43.6	43.7
BL Lac	LBL	0.069	2.49	44.0	44.2	3.60 ± 0.5	44.0	44.1
PKS2005–489	HBL	0.071	2.50	44.3	44.4	4.00 ± 0.4	44.2	44.3
$\rm RGB~J0152{+}017$	HBL	0.080	2.55	44.1	44.3	3.00 ± 0.4	44.0	44.2
W Comae	IBL	0.102	2.65	45.1	45.3	3.80 ± 0.4	44.9	45.1
PKS2155–304	HBL	0.116	2.70	44.2	44.4	3.32 ± 0.06	44.1	44.3
H1426 + 428	HBL	0.129	2.74	46.0	46.2	3.70 ± 0.4	45.9	46.2
1ES0806 + 524	HBL	0.138	2.77	43.8	44.1		43.8	44.1
1ES0229 + 200	HBL	0.139	2.77	44.2	44.5	2.50 ± 0.19	44.3	44.6
H2356–309	HBL	0.165	2.84	44.6	44.9	3.09 ± 0.24	44.5	44.9
1ES1218 + 304	HBL	0.182	2.88	45.4	45.8	3.00 ± 0.4	45.2	45.6
1 ES0347 - 121	HBL	0.185	2.89	44.8	45.2	3.10 ± 0.23	44.8	45.2
1ES1101-232	HBL	0.186	2.89	44.7	45.1	2.94 ± 0.20	44.8	45.2
1ES1011 + 496	HBL	0.212	2.95	45.4	45.9	4.00 ± 0.5	45.5	46.0
PG1553 + 113	HBL	0.300	3.09	45.9	46.6	4.50 ± 0.3	46.1	46.8
S50716 + 714	HBL	0.310	3.11	46.3	47.0		46.1	46.8
3C 66A	IBL	0.444	3.26	46.1	47.2		46.1	47.2
3C 279	HBL	0.536	3.33	46.4	47.8	4.10 ± 0.7	46.7	48.1
Cyg X-3			-1.94	36.7				
Cyg γ -2				36.3				
Crab			-2.70	34.0		2.49 ± 0.06		
Vela			-3.30	33.0				
Geminga			-3.82	32.5				

Таблица 1. Результаты наблюдений на ГТ-48

d – расстояние до объекта в Мпк.

L1 – светимость в эрг/с, E = (0.1–1) ТэВ без учета поглощения гамма-квантов

L2 – светимость в эрг/с, E = (0.1–1) ТэВ с учетом поглощения гамма-квантов

L3 – светимость в эрг/с, $\mathrm{E}>1\mathrm{T}$ э
В без учета поглощения гамма-квантов

L4 – светимость в эрг/с, E>1 TэB с учетом поглощения гамма-квантов

При составлении таблицы 1 использованы результаты (Хормс, 2008; Викс, 2008; Нешпор, Степанян, 2006). Источники гамма-квантов СВЭ разделены на различные типы: HPQ – квазары с сильной поляризацией излучения, LPQ – квазары со слабой поляризацией излучения, HBL – лацертиды с максимумом излучения в области высокой частоты, LBL – лацертиды с максимумом излучения в области высокой частоты, LBL – лацертиды с максимумом излучения в области высокой частоты, LBL – лацертиды с максимумом излучения в области высокой частоты, LBL – лацертиды с комсимумом излучения в области средней частоты и FSRQ – квазары с плоским радиоспектром. Среди них более двадцати галактик с активными ядрами (АЯГ). Четыре объекта (Geminga, Vela, Crab и Cyg X-3) содержат пульсары, излучающие гамма-кванты CBЭ (Зыскин и др., 1988; Нешпор и др., 2001; Гриндлей и др., 1975; 1976, Чадвик и др., 1982). Все объекты, перечисленные в таблице, кроме одного (источник Cyg_{γ} -2), наблюдаются в широком диапазоне частот от радио- до гамма-излучения CBЭ. Объект Cyg_{γ} -2 (Нешпор и др., 1995; Нешпор и др., 2009) не сопровождается никакими сопутствующими излучениями на других частотах (и даже в рентгеновском диапазоне), поэтому его принято считать неидентифицированным источником.

3 Зависимость светимости гамма-излучения от расстояния до объекта

В таблице 1 приведены наиболее известные источники гамма-излучения СВЭ. Приведено красное смещение z, расстояние d (Мпк) (Проник, 2010; Райт, 2006), рассчитанное в предположении, что d = 442 Мпк для z = 0.1, и тогда $d_{(z+0.1)} = dZ + 30000 / H_{(z+0.1)}$, где $H_{(z+0.1)} = H_o \cdot (Sqrt \cdot [Q_m \cdot (1+Z)^3 + Q_v(Q_m = 0.263, Q_v = 0.737 \text{ и } H_o = 65 \text{ км/с· Mnc}).$

Приведена величина светимости (L1) в эрг $\cdot c^{-1}$ гамма-излучения CBЭ $E_{\gamma} = (0.1-1)$ Тэв, в предположении, что гамма-излучение испускается изотропно и без учета межгалактического поглощения.

В статье (Франческини и др., 2008) рассмотрен вопрос о величине поглощения потока гаммаквантов СВЭ при распространении в межгалактическом пространстве. В (Франческини и др., 2008) приведены величины оптической толщи τ для различных z (z = 0.01–3.0) в зависимости от энергии гамма-кванта СВЭ ($\gamma = (0.02-166)$ ТэВ), интегральная величина светимости L в диапазоне энергий E = (0.1–1ТэВ). С учетом зависимости величины τ от энергии (Франческини и др., 2008) нами вычислена величина потока гамма-квантов СВЭ L2, ($E_{\gamma} = (0.1–1.0)$ ТэВ) для конкретного объекта. Для источников, приведенных в таблице 1, на рисунке 1 представлена зависимость логарифма светимости от логарифма расстояния до объекта Lg(d) без учета поглощения (Lg(L1) – звездочки) и с учетом поглощения (Lg (L2) – кружочки). Линейная аппроксимация методом наименыших квадратов дала следующее выражения. Зависимость светимости от расстояния без учета поглощения гамма-квантов СВЭ:

$$LgL_{\gamma}(d) = 2.3 \cdot Lgd + 38.7.$$
 (1)

Зависимость светимости от расстояния с учетом поглощения гамма-квантов СВЭ:

$$LgL_{\gamma}(d) = 3.0 \cdot Lgd + 37.0.$$
 (2)

Из рис. 1 видно, что с увеличением расстояния до галактики светимость гамма-излучения CBЭ ($_{\gamma} = (0.1-1.0)$ МэВ) растет.

Для гамма-излучения CBЭ $E_{\gamma} > 1.0$ ТэВ в таблице 1 приведена величина светимости без учета межгалактического поглощения L3 и с учетом межгалактического поглощения L4 (Франческини и др., 2008). На рис. 2 представлена зависимость логарифма светимости от логарифма расстояния Lg d без учета поглощения (Lg (L3) – крестики) и с учетом поглощения (Lg (L4) – кружочки). Линейная аппроксимация методом наименьших квадратов дала следующее выражение. Зависимость светимости от расстояния без учета поглощения гамма-квантов CBЭ:

$$LgL_{\gamma}(d) = 1.54 \cdot Lgd + 39.4.$$
 (3)

Зависимость светимости от расстояния с учетом поглощения гамма-квантов СВЭ:

Рис. 1. Зависимость светимости гамма-излучения СВЭ Е $\gamma = (0.1-1)$ ТэВ от расстояния до объекта

Рис. 2. Зависимость светимости гамма-излучения СВЭ $E_{\gamma} > 1$ ТэВ от расстояния до объекта

Ю.И. Нешпор

$$LgL_{\gamma}(d) = 2.9 \cdot Lgd + 36.5.$$
 (4)

Из рис. 1, 2 видно, что если расстояние до объекта изменяется на порядок, то светимость гаммаизлучения СВЭ (с учетом поглощения) возрастает на три порядка.

Далее нами были использованы опубликованные данные наблюдений гамма-излучения высоких энергий ВЭ ($E_{\gamma} > 100$ МэВ), полученные на спутнике GRO COMPTON прибором EGRET (третий EGPET-каталог; Хартман и др., 1999). Из данных для 271 объекта, полученных в период с 22 апреля 1991 года по 3 октября 1995 года, нами были взяты только те гамма-источники (78 объектов), для которых в этом же каталоге приводится красное смещение (z). Для каждого объекта в публикации (Хартман и др., 1999) приводится несколько значимых измерений гамма-потока, проведенных в разное время. С учетом веса каждого измерения нами были вычислены средние значения величин потоков гамма-излучения для каждого объекта, затем их величины светимости L (эрг/с) в предположении, что гамма-излучение испускается изотропно. Результаты представлены на рис. 3, где по оси абсцисс отложено Lgd (d – расстояние до объекта в Мпк), а по оси ординат LgL (L – светимость в эрг· c^{-1}). Из рис. 3 видно, что светимость гамма-излучения ВЭ растет с увеличением расстояния. Линейная аппроксимация методом наименьших квадратов дает следующее выражение:

$$LgL_{\gamma}(d) = 2.1 \cdot Lgd + 39.2.$$
 (5)

Светимость объектов в области энергий $E_{\gamma} > 100$ МэВ (выражение (5)) и ($E_{\gamma} > (0.1-1.0)$ ТэВ (выражение (1), без учета поглощения) растет как квадрат расстояния, а в области энергий $E_{\gamma} > (0.1-1.0)$ ТэВ и $E_{\gamma} > 1.0$ ТэВ с учетом поглощения (выражения (2) и (4)) растет как куб расстояния. Напрашивается вывод, что с увеличением расстояния до объекта общая энергия галактик с активными ядрами, связанная, по-видимому, с числом частиц, участвующих в процессе излучения, растет.

Рис. 3. Зависимость светимости гамма-излучения ВЭ $E_{\gamma}~>100$ МэВ от расстояния до объекта

Рис. 4. Зависимость показателя дифференциального спектра гамма-излучения СВЭ от расстояния до объекта

4 Показатель дифференциального спектра гамма-излучения CBЭ

Высокая чувствительность современных наземных гамма-телескопов с многоэлементными детекторами (гамма-телескопы второго поколения; Владимирский и др., 1994) позволяет по данным регистрации черенковских вспышек строить дифференциальный спектр гамма-излучения СВЭ в диапазоне (0.1–10) ТэВ. В работе (Хормс, 2008) для 22 гамма-источников СВЭ приведены значения показателя спектра alpha (α) (таблица 1). Известно, что с увеличением расстояния до источника СВЭ величина поглощения гамма-излучения растет с увеличением энергии, следовательно, спектр становится более крутым, т. е. величина α должна расти с увеличением расстояния до источника.

На рис. 4 приведена зависимость показателя спектра от расстояния. Из рис. 4 видно, что коэффициент корреляции невысокий, поэтому утверждать, что показатель спектра зависит от расстояния до источника не представляется возможным. Можно высказать лишь предположение, что эта зависимость очень слабая.

Имя	Тип	Ζ	LogL(эрг/с)	alpha
M87	FRI	0.0044	41.8	2.6 ± 0.4
			42.3	2.2 ± 0.2
Mk 421	HBL	0.030	45.0	3.0 ± 0.2
			45.5	2.06 ± 0.03
Mk 501	HBL	0.034	44.5	2.45 ± 0.07
			45.4	2.09 ± 0.03
$1 ext{ES2344} + 514$	HBL	0.044	44.0	2.9 ± 0.2
			45.3	2.5 ± 0.2
$1\mathrm{ES1959}{+}650$	HBL	0.047	44.3	2.7 ± 0.1
			45.0	1.8 ± 0.2
PKS2155–304	HBL	0.116	44.1	3.4 ± 0.1
			46.8	2.7 ± 0.1

Таблица 2. Результаты наблюдений на ГТ-48

В таблице 2 (Хормс, 2008) приведены показатели дифференциального спектра *а* для двух состояний активности шести галактик с активными ядрами.

Из таблицы 2 видно, что с увеличением светимости (активности), показатель дифференциального спектра α убывает. В среднем при увеличении светимости АЯГ на один порядок показатель дифференциального спектра α уменьшается на 0.52 ± 0.08 , т. е. эффект уменьшения α наблюдается с очень высокой достоверностью (6.5 стандартных отклонения).

Таким образом, с увеличением активности спектр гамма-излучения CBЭ становится более пологим, это означает, что во время возмущения частицы более высоких энергий ускоряются более эффективно.

5 Заключение

В заключение отметим такой факт, что нормальные галактики, мощность излучения которых в радиодиапазоне (30 м – 3 см) составляет 10^{37} эрг $\cdot c^{-1}$, имеют расстояние примерно 0.7 Мпк, радиогалактики умеренной мощности порядка 10^{40} эрг $\cdot c^{-1}$ находятся на расстоянии примерно 7 Мпк, а мощная радиогалактика (двойная галактика Лебедь А) излучает в радиодиапазоне 10^{45} эрг $\cdot c^{-1}$ и находится на расстоянии 171 Мпк (Физика космоса, 1986).

Таким образом, мощность излучения внегалактических объектов растет с увеличением расстояния до них. Как это можно объяснить? Возможно, это просто селекция. С расстоянием объем Вселенной увеличивается, растет и число мощных объектов, а следовательно, вероятность обнаружения мощного объекта на больших расстояниях растет, поэтому мы и наблюдаем такую зависимость. Число зарегистрированных объектов на спутнике GRO COMPTON прибором EGRET (третий EGPET-каталог) растет пропорционально объему. Рис. 3 иллюстрирует такое предположение. Почему нет объектов большой светимости на малых расстояниях? Возможно, это связано с космологией, т. е. такова природа развития Вселенной (более молодые объекты светят ярче), но тут, по-видимому, нужно поставить много знаков вопроса. Дать определенное объяснение полученному результату мы не можем, но считаем, что этот результат представляет несомненный интерес и требует дальнейшего изучения. Рост светимости как квадрат расстояния (гамма-излучение CBЭ $_{\gamma} = (0.1-1.0)$ ТэВ и гамма-излучение ВЭ) можно объяснить законом распространения излучения, но тогда все АЯГ, независимо от расстояния, на котором они от нас расположены, излучают равные потоки (кв/ $cm^2 \cdot 1$) – это как-то трудно представить. Кроме того, если светимость растет как квадрат расстояния, то где же поглощение гамма-квантов $E_{\gamma} = 0.1$ –1.0 ТэВ? Хотя для гамма-квантов $E_{\gamma} > 1.0$ ТэВ такой закон не соблюдается. Светимость растет медленнее, чем квадрат расстояния, это может означать, что поглощение гамма-квантов происходит на более высоких энергиях $E_{\gamma} >$ 1.0 Тэв, что также подтверждается зависимостью величины показателя спектра от расстояния до объекта.

Выводы: Светимость АЯГ растет с увеличением расстояния до объекта.

Величина поглощения гамма-квантов СВЭ значительно меньше, чем приводимые величины в работе Франческини и др. (2008), и как показывают полученные результаты данной работы, обнаружить поток гамма- квантов СВЭ с помощью современных гамма-телескопов возможно даже от объектов с Z > 0.5.

Автор выражает благодарность Кочетковой С.Г. за помощь в оформлении статьи.

Литература

Алберт и др. (Albert J. et al.) // Science. 2008. V. 320. P. 1752.

Викс (Weekes T.C.) // arXiv:0811.1197v1 [astro-ph] 7 Nov 2008.

Владимирский Б.М., Зыскин Ю.Л., Корниенко А.А. и др. // Изв. Крымск. Астрофиз. Обсерв. 1994. Т. 91. С. 74.

Гриндлей и др.(Grindlay J.E., Helmken H.F., Weekes T.C.) // Astrophys. J. 1976. V. 209. P. 592.

Особенности гамма-излучения активных ядер галактик

- Гриндлей и др. (Grindlay J.E., Helmken H.F., Brown Hanbury R., Davis J., Allen L.R.) // Astrophys. J. 1975. V. 201. P. 81.
- Зыскин Ю.Л., Нешпор Ю.И., Степанян А.А. // Изв. АН СССР. сер. физ. 1988. Т. 52. С. 2325.
- Нешпор Ю.И., Степанян А.А., Калекин О.Р. и др. // Письма в Астрон. журн. 1998. Т. 24. С. 167. Нешпор Ю.И., Степанян А.А. // Астрон. журн. 2006. Т. 83. С. 771.
- Нешпор Ю.И., Степанян А.А., Зыскин Ю.И. и др. // Письма в Астрон. журн. 2001. Т. 27. С. 266.
- Нешпор и др. (Neshpor Yu.I., Kalekin O.R., Stepanian A.A., et al.) // Proc. 25th ICRC. 1995. Rome. Italy. V. 2. P. 385.
- Нешпор Ю.И., Жовтан А.В., Жоголев Н.А. и др. // Изв. РАН. сер. физ. 2009. Т. 73. С. 694.
- Проник В.И. // Кинем. и физ. небесн. тел. 2010. (в печати).
- Райт (Wright E.L.) // PASP. 2006. V. 118. P. 1711.
- Стекер и др. (Stecker F.W., De Jager O.C., Salomon M.N.) // Astrophys. J. 1996. V. 473. P. 75.
- Степанян А.А., Нешпор Ю.И., Андреева Н.А. и др. // Астрон. журн. 2002. Т. 79. №. 8. С. 702.
- Томпсон и др. (Thompson D.J., Bertsch D.L., Dingus B.L., et al.) // Astrophys. J. Suppl. Ser. 1995. V. 101. P. 259.
- Тепнима и МАГИК (Teshima M. for The MAGIC Collaboration) // Astron. Telegram. 2008. №. 1500. Сюняев Р.А. (ред.) // Физика космоса. М.: Советская энциклопедия. 1986.
- CIOHNEB I.A. (ped.) // Ψ ИЗИКА КОСМОСА. MI.. СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ. 1960.
- Франческини и др. (Franceschini A., Rodighiero G., Vaccari V.) // Astron. Astrophys. 2008. V. 487. P. 837.
- Хормс (Horms D.) // arXiv:0808.3744v2 [astro-ph] 4 Sep 2008.
- Хартман и др. (Hartman R.C., Bertsch D.L., Bloom S.D., et al.) // Astrophys. J. 1999. V. 193. P. 79.
- Чадвик и др. (Chadwick P.M., Dipper N.A., Dawthwaite J.C., et al.) // Nature. 1982. V. 318. P. 642.